Ƙarin Ƙarƙashin Ƙarƙara
| Iri |
natural phenomenon (en) |
|---|---|
| Sanadi | Canjin yanayi |

Ƙarin ƙarancin ƙasa shine abin da ya faru cewa duk wani canji a cikin ma'aunin radiation (misali ƙarancin ɗakunan ɗakunan ɗakuna) yana haifar da babban canji a zafin jiki kusa da sanduna fiye da matsakaicin duniya.[1] Wannan ana kiransa da rabo na dumama da zafi na wurare masu zafi. A duniyar da ke da yanayi wanda zai iya ƙuntata fitar da radiation na dogon lokaci zuwa sararin samaniya (sakamakon greenhouse), yanayin zafi zai zama mai dumi fiye da lissafin daidaitattun yanayin duniya zai yi hasashen. Inda yanayi ko teku mai zurfi zai iya jigilar zafi zuwa tashar, tashar za ta kasance mai dumi kuma yankunan equatorial sun fi sanyi fiye da ma'aunin radiation na gida. Sandunan za su sami mafi yawan sanyaya lokacin da matsakaicin zafin jiki na duniya ya fi ƙasa da yanayin tunani; a madadin haka, sandunan za su fuskanci mafi girman dumama lokacin da matsakaiciyar zafin jiki ta duniya ta fi girma.[1]
A cikin matsananciyar, ana zaton Duniya Venus ta sami karuwa sosai a cikin tasirin greenhouse a rayuwarta, [2] sosai har ma da sandunanta sun yi zafi sosai don yin zafin jikinta yadda ya kamata isothermal (babu bambanci tsakanin sanduna da ma'auni). [3] [4] A Duniya, tururi na ruwa da iskar gas suna ba da ƙaramin tasirin greenhouse, kuma yanayi da manyan teku suna ba da ingantaccen jigilar zafi zuwa pole. Dukkanin canje-canjen yanayi na palaeoclimate da canje-canjin dumama na duniya na baya-bayan nan sun nuna karuwar polar, kamar yadda aka bayyana a ƙasa.
Ƙarin Arctic shine ƙarancin polar na Arewacin Pole na Duniya kawai; Ƙarancin Antarctic shine na Kudancin Pole.
Tarihi
[gyara sashe | gyara masomin]Mikhail Budyko ne ya buga wani binciken da ya danganci fadada Arctic a shekarar 1969, [5] kuma an taƙaita ƙarshen binciken a matsayin "Rashin kankara na teku yana shafar yanayin zafi na Arctic ta hanyar ra'ayi na albedo. " [6] [7] A wannan shekarar, William D. Sellers ne ya buga irin wannan samfurin.[8] Dukkanin binciken sun ja hankalin mutane tun lokacin da suka nuna yiwuwar samun kyakkyawan ra'ayi a cikin tsarin yanayi na duniya.[9] A shekara ta 1975, Manabe da Wetherald sun buga samfurin yaduwar yaduwar farko wanda ya kalli tasirin karuwar iskar gas. Kodayake an tsare shi a ƙasa da kashi ɗaya bisa uku na duniya, tare da teku "swamp" kuma ƙasa ce kawai a manyan latitudes, ya nuna zafi na Arctic da sauri fiye da wurare masu zafi (kamar yadda duk samfuran da suka biyo baya suke). [10]
Ƙara
[gyara sashe | gyara masomin]Hanyoyin fadadawa
[gyara sashe | gyara masomin]Bayani da ke da alaƙa da kankara na teku da dusar ƙanƙara ana nuna su a matsayin ɗaya daga cikin manyan abubuwan da ke haifar da fadada ƙasa.[11][12][13] Wadannan ra'ayoyin suna da mahimmanci a cikin fadada yankin, kodayake aikin da aka yi kwanan nan ya nuna cewa ra'ayoyi na raguwa mai yiwuwa yana da mahimmanci ga ra'ayoyen kankara-albedo don fadada Arctic. [14][15] Goyon bayan wannan ra'ayin, ana kuma lura da karuwa mai girma a cikin duniyar samfurin ba tare da kankara ko dusar ƙanƙara ba.[16] Ya bayyana ya samo asali ne daga (watakila na ɗan lokaci) karuwar jigilar zafi zuwa pole kuma kai tsaye daga canje-canje a cikin ma'aunin radiation na gida.[16] Ma'aunin radiation na cikin gida yana da mahimmanci saboda raguwar radiation na dogon lokaci zai haifar da karuwar dangi mafi girma a cikin radiation na net kusa da sanduna fiye da kusa da ma'auni.[15] Don haka, tsakanin ra'ayoyin raguwa da canje-canje a cikin ma'aunin radiation na gida, ana iya danganta yawancin karuwar polar zuwa canje-canje na radiation mai tsawo. [14][17] Wannan gaskiya ne musamman ga Arctic, yayin da tsaunuka masu tsawo a Antarctica suna iyakance tasirin ra'ayoyin raguwa.[15][18]
Wasu misalai na tsarin tsarin yanayi da ake zaton suna ba da gudummawa ga fadadawar polar na baya-bayan nan sun haɗa da rage dusar ƙanƙara da kankara ta teku, canje-canje a cikin yanayin yanayi da na teku, kasancewar hayaki na mutum a cikin yanayin Arctic, da ƙaruwa a cikin girgije da tururin ruwa. Har ila yau, an danganta tilasta CO2 ga karuwar polar.[19] Yawancin karatu suna haɗa canje-Canjin kankara na teku zuwa fadada polar.[12] Dukkanin kankara da kauri suna tasiri ga fadada polar. Misalai na yanayi tare da karamin kankara na teku da kuma karamin kanjin teku suna nuna karuwar polar.[20] Wasu samfurori na yanayi na zamani suna nuna fadada Arctic ba tare da canje-canje a cikin dusar ƙanƙara da rufe kankara ba.[21]
Hanyoyin mutum da ke ba da gudummawa ga dumama suna da mahimmanci don fahimtar Yanayin yanayi.[22] Har ila yau, yanayin zafi yana shafar yanayin halittu da yawa, gami da yanayin halittu na ruwa da na ƙasa, tsarin yanayi, da yawan mutane.[19] Ƙarin ƙwayoyin cuta galibi ana motsa shi ne ta hanyar matakai na ƙwayoyin ƙwayoyin ƙasa na gida tare da kusan wani tilasta nesa, yayin da zafin jiki na ƙwayoyi ke sarrafawa ta hanyar tilasta wurare masu zafi da matsakaicin matsakaicin.[19] Wadannan tasirin karfafawa sun haifar da ci gaba da bincike a fuskar dumamar yanayi.
Gudun teku
[gyara sashe | gyara masomin]An kiyasta cewa kashi 70% na makamashi na iska na duniya ana canja shi zuwa teku kuma yana faruwa a cikin Antarctic Circumpolar Current (ACC). [23] A ƙarshe, hauhawar ruwa saboda matsin iska yana jigilar ruwan sanyi na Antarctic ta hanyar halin yanzu na Atlantic, yayin da yake dumama su a kan ma'auni, da kuma cikin yanayin Arctic. Ana lura da wannan musamman a cikin manyan latitudes.[20] Don haka, dumama a cikin Arctic ya dogara da ingancin sufuri na teku na duniya kuma yana taka rawa a cikin tasirin gani na polar.[23]
Rage iskar oxygen da low-pH a lokacin La Niña sune matakai da ke da alaƙa da raguwar samar da farko da kuma yaduwar ruwa na teku.[24] An ba da shawarar cewa tsarin karuwar yanayin zafin jiki na Arctic a lokacin La Niña na ENSO na iya danganta shi da Tropically Excited Arctic Warming Mechanism (TEAM), lokacin da raƙuman Ruwa na Rossby ke yadawa zuwa pole, wanda ke haifar da ƙarfin raƙuman raƙuman ƙasa da ƙaruwa a cikin radiation infrared.[1][25]
Faɗin faɗaɗa
[gyara sashe | gyara masomin]Ana ƙididdige ƙarancin ƙarancin polar dangane da ƙarancin ƙarfi na polar, gabaɗaya an bayyana shi azaman rabo na wasu canje-canje a cikin zafin jiki na polar zuwa canji mai dacewa a cikin matsakaicin zafin jiki:
- P A F = Δ T p Δ T ̄ {\displaystyle {PAF}={\Delta {T}_{p} \over \Delta {\overline {T}}}} ,
inda
Δ
T
p
{\displaystyle \Delta {T}_{p}}
canji ne a cikin zafin jiki na polar kuma
Δ
T ̄
{\displaystyle \Delta {\overline {T}}}
shine, alal misali, canji mai dacewa a cikin matsakaicin zafin jiki na duniya.
Aiwatar da aka saba da shi [26] ya bayyana canje-canjen zafin jiki kai tsaye a matsayin anomalies a cikin zafin iska na sama dangane da lokacin kwanan nan (yawanci shekaru 30).[27] Sauran sun yi amfani da rabo na bambancin zafin iska a kan wani lokaci mai tsawo.[28]
Mataki na fadadawa
[gyara sashe | gyara masomin]
An lura cewa zafi na Arctic da Antarctic yawanci suna ci gaba da kasancewa saboda tilastawar orbital, wanda ke haifar da abin da ake kira tasirin gani na polar.[29]
Ƙarin yanayi na Paleoclimate
[gyara sashe | gyara masomin]Tsarin glacial / Interglacial na Pleistocene yana ba da tabbacin palaeoclimate mai yawa na fadada polar, duka daga Arctic da Antarctic.[27] Musamman, hauhawar zafin jiki tun lokacin da aka yi amfani da shi a ƙarshen shekaru 20,000 da suka gabata yana ba da hoto mai kyau. Bayanan zafin jiki na wakilai daga Arctic (Greenland) da kuma daga Antarctic suna nuna abubuwan fadada polar akan tsari na 2.0. [27]
Ƙarin Arctic na baya-bayan nan
[gyara sashe | gyara masomin]
Hanyoyin da aka ba da shawarar da ke haifar da fadada Arctic da aka lura sun haɗa da raguwar kankara na teku na Arctic (ruwa mai buɗewa yana nuna ƙarancin hasken rana fiye da kankara na ruwa), jigilar zafi na yanayi daga ma'auni zuwa Arctic, [31] da kuma ra'ayi na raguwa. [15]
An bayyana Arctic a tarihi a matsayin warming sau biyu kamar yadda duniya ta kasance, amma wannan kimantawa ya dogara ne akan abubuwan da suka gabata waɗanda suka rasa hanzarin kwanan nan. Yazo a shekara ta 2021, an sami isasshen bayanai don nuna cewa Arctic ya yi zafi sau uku kamar yadda duniya ta yi - 3.1 ° C tsakanin shekara ta 1971 da shekarar 2019, sabanin dumamar duniya na 1 ° C a wannan lokacin.[32] Bugu da ƙari, wannan ƙididdigar ta bayyana Arctic a matsayin duk abin da ke sama da 60th parallel north, ko kuma cikakken kashi ɗaya bisa uku na Arewacin Hemisphere: a cikin 2021-2022, an gano cewa tun daga 1979, dumama a cikin Arctic Circle kanta (sama da 66th parallel) ya kasance kusan sau huɗu fiye da matsakaicin duniya.[33][34] A cikin Arctic Circle kanta, har ma da karuwar Arctic yana faruwa a yankin Barents Sea, tare da hotspots a kusa da West Spitsbergen Current: tashoshin yanayi da ke kan hanyarsa rikodin shekaru goma suna warming har zuwa sau bakwai da sauri fiye da matsakaicin duniya.[35][36] Wannan ya haifar da damuwa cewa ba kamar sauran kankara na teku na Arctic ba, rufe kankara a cikin Tekun Barents na iya ɓacewa har abada har ma da kusan digiri 1.5 na dumama duniya.[37][38]
The acceleration of Arctic amplification has not been linear: a 2022 analysis found that it occurred in two sharp steps, with the former around 1986, and the latter after 2000.[39] The first acceleration is attributed to the increase in anthropogenic radiative forcing in the region, which is in turn likely connected to the reductions in stratospheric sulfur aerosols pollution in Europe in the 1980s in order to combat acid rain. Since sulphate aerosols have a cooling effect, their absence is likely to have increased Arctic temperatures by up to 0.5 degrees Celsius.[40] The second acceleration has no known cause,[32] which is why it did not show up in any climate models. It is likely to be an example of multi-decadal natural variability, like the suggested link between Arctic temperatures and Atlantic Multi-decadal Oscillation (AMO),[41] in which case it can be expected to reverse in the future. However, even the first increase in Arctic amplification was only accurately simulated by a fraction of the current CMIP6 models.[39] Recent studies show the Arctic has warmed nearly four times faster than the global average since 1979, with areas like the Barents Sea experiencing rates up to seven times higher, highlighting the urgent need to address polar climate change.[42]
Tasirin da zai yiwu a kan yanayin tsakiyar latitude
[gyara sashe | gyara masomin]Dubi kuma
[gyara sashe | gyara masomin]- Rashin daidaituwa na Arctic dipole
- Tsinkaye na Arctic
- Yanayin yanayi na Arctic
- Wurin Wurin Wutar Wutar Wuta
- Kyakkyawan zafi na stratosphere
Manazarta
[gyara sashe | gyara masomin]- ↑ 1.0 1.1 1.2 Lee, Sukyoung (January 2014). "A theory for polar amplification from a general circulation perspective" (PDF). Asia-Pacific Journal of the Atmospheric Sciences. 50 (1): 31–43. Bibcode:2014APJAS..50...31L. doi:10.1007/s13143-014-0024-7. S2CID 20639425. Archived from the original (PDF) on 2016-03-04. Retrieved 2014-05-01.
- ↑ Kasting, J. F. (1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus. 74 (3): 472–94. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID 11538226.
- ↑ Williams, David R. (15 April 2005). "Venus Fact Sheet". NASA. Archived from the original on 2016-03-08. Retrieved 2007-10-12.
- ↑ Lorenz, Ralph D.; Lunine, Jonathan I.; Withers, Paul G.; McKay, Christopher P. (2001). "Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport" (PDF). Ames Research Center, University of Arizona Lunar and Planetary Laboratory. Retrieved 2007-08-21.
- ↑ Budyko, M.I. (1969). "The effect of solar radiation variations on the climate of the Earth". Tellus. 21 (5): 611–9. Bibcode:1969Tell...21..611B. doi:10.3402/tellusa.v21i5.10109. S2CID 21745322.
- ↑ Cvijanovic, Ivana; Caldeira, Ken (2015). "Atmospheric impacts of sea ice decline in CO2 induced global warming" (PDF). Climate Dynamics. 44 (5–6): 1173–86. Bibcode:2015ClDy...44.1173C. doi:10.1007/s00382-015-2489-1. S2CID 106405448.
- ↑ "Ice in Action: Sea ice at the North Pole has something to say about climate change". YaleScientific. 2016.
- ↑ Sellers, William D. (1969). "A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System". Journal of Applied Meteorology. 8 (3): 392–400. Bibcode:1969JApMe...8..392S. doi:10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.
- ↑ Oldfield, Jonathan D. (2016). "Mikhail Budyko's (1920–2001) contributions to Global Climate Science: from heat balances to climate change and global ecology". Advanced Review. 7 (5): 682–692. Bibcode:2016WIRCC...7..682O. doi:10.1002/wcc.412.
- ↑ Manabe, Syukoro; Wetherald, Richard T. (1975). "The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model". Journal of the Atmospheric Sciences. 32 (1): 3–15. Bibcode:1975JAtS...32....3M. doi:10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.
- ↑ Hansen J, Sato M, Ruedy R (1997). "Radiative forcing and climate response". Journal of Geophysical Research: Atmospheres. 102 (D6): 6831–64. Bibcode:1997JGR...102.6831H. doi:10.1029/96jd03436.
- ↑ 12.0 12.1 "IPCC AR5 – Near-term Climate Change: Projections and Predictability (Chapter 11 / page 983 )" (PDF). 2013.
- ↑ Pistone, Kristina; Eisenman, Ian; Ramanathan, Veerabhadran (2019). "Radiative Heating of an Ice-Free Arctic Ocean". Geophysical Research Letters (in Turanci). 46 (13): 7474–7480. Bibcode:2019GeoRL..46.7474P. doi:10.1029/2019GL082914. S2CID 197572148.
- ↑ 14.0 14.1 Bekryaev, Roman V.; Polyakov, Igor V.; Alexeev, Vladimir A. (2010-07-15). "Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming". Journal of Climate (in Turanci). 23 (14): 3888–3906. Bibcode:2010JCli...23.3888B. doi:10.1175/2010JCLI3297.1. ISSN 0894-8755.
- ↑ 15.0 15.1 15.2 15.3 Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.; Bodas-Salcedo, Alejandro; Chepfer, Helene; Docquier, David; Jonko, Alexandra; Kushner, Paul J.; Lecomte, Olivier; Massonnet, François; Park, Hyo-Seok; Pithan, Felix; Svensson, Gunilla; Vancoppenolle, Martin (December 2018). "Quantifying climate feedbacks in polar regions". Nature Communications. 9 (1): 1919. Bibcode:2018NatCo...9.1919G. doi:10.1038/s41467-018-04173-0. PMC 5953926. PMID 29765038.
- ↑ 16.0 16.1 Alexeev VA, Langen PL, Bates JR (2005). "Polar amplification of surface warming on an aquaplanet in "ghost forcing" experiments without sea ice feedbacks". Climate Dynamics. 24 (7–8): 655–666. Bibcode:2005ClDy...24..655A. doi:10.1007/s00382-005-0018-3. S2CID 129600712.
- ↑ Payne, Ashley E.; Jansen, Malte F.; Cronin, Timothy W. (2015). "Conceptual model analysis of the influence of temperature feedbacks on polar amplification". Geophysical Research Letters (in Turanci). 42 (21): 9561–9570. Bibcode:2015GeoRL..42.9561P. doi:10.1002/2015GL065889. ISSN 1944-8007.
- ↑ Hahn, L. C.; Armour, K. C.; Battisti, D. S.; Donohoe, A.; Pauling, A. G.; Bitz, C. M. (28 August 2020). "Antarctic Elevation Drives Hemispheric Asymmetry in Polar Lapse Rate Climatology and Feedback". Geophysical Research Letters. 47 (16). Bibcode:2020GeoRL..4788965H. doi:10.1029/2020GL088965. S2CID 222009674.
- ↑ 19.0 19.1 19.2 Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.; Proistosescu, Cristian; Kang, Sarah M.; Xie, Shang Ping; Kim, Doyeon; McGregor, Shayne; Zhang, Wenjun; Zhao, Sen; Cai, Wenju (December 2018). "Polar amplification dominated by local forcing and feedbacks". Nature Climate Change (in Turanci). 8 (12): 1076–1081. Bibcode:2018NatCC...8.1076S. doi:10.1038/s41558-018-0339-y. ISSN 1758-6798. S2CID 92195853.
- ↑ 20.0 20.1 Holland, M. M.; Bitz, C. M. (2003-09-01). "Polar amplification of climate change in coupled models". Climate Dynamics (in Turanci). 21 (3): 221–232. Bibcode:2003ClDy...21..221H. doi:10.1007/s00382-003-0332-6. ISSN 1432-0894. S2CID 17003665.
- ↑ Pithan, Felix; Mauritsen, Thorsten (February 2, 2014). "Arctic amplification dominated by temperature feedbacks in contemporary climate models". Nature Geoscience. 7 (3): 181–4. Bibcode:2014NatGe...7..181P. doi:10.1038/ngeo2071. S2CID 140616811.
- ↑ Taylor, Patrick C.; Cai, Ming; Hu, Aixue; Meehl, Jerry; Washington, Warren; Zhang, Guang J. (2013-09-09). "A Decomposition of Feedback Contributions to Polar Warming Amplification". Journal of Climate. American Meteorological Society. 26 (18): 7023–7043. Bibcode:2013JCli...26.7023T. doi:10.1175/jcli-d-12-00696.1. ISSN 0894-8755.
- ↑ 23.0 23.1 Petr Chylek; Chris K. Folland; Glen Lesins; Manvendra K. Dubey (February 3, 2010). "Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures" (PDF). Geophysical Research Letters. 12 (8): 4015–22. Bibcode:2010GeoRL..37.8703C. doi:10.1029/2010GL042793. S2CID 18491097. Archived from the original (PDF) on February 20, 2014. Retrieved May 1, 2014.
- ↑ Sung Hyun Nam; Hey-Jin Kim; Uwe Send (November 23, 2011). "Amplification of hypoxic and acidic events by La Niña conditions on the continental shelf off California". Geophysical Research Letters. 83 (22): L22602. Bibcode:2011GeoRL..3822602N. doi:10.1029/2011GL049549. S2CID 55150106.
- ↑ Sukyoung Lee (June 2012). "Testing of the Tropically Excited Arctic Warming Mechanism (TEAM) with Traditional El Niño and La Niña". Journal of Climate. 25 (12): 4015–22. Bibcode:2012JCli...25.4015L. doi:10.1175/JCLI-D-12-00055.1. S2CID 91176052.
- ↑ Masson-Delmotte, V.; M. Kageyama; P. Braconnot; S. Charbit; G. Krinner; C. Ritz; E. Guilyardi; et al. (2006). "Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints". Climate Dynamics. 26: 513–529. Bibcode:2006ClDy...26..513M. doi:10.1007/s00382-005-0081-9. S2CID 2370836.
- ↑ 27.0 27.1 27.2 James Hansen; Makiko Sato; Gary Russell; Pushker Kharecha (September 2013). "Climate sensitivity, sea level and atmospheric carbon dioxide". Philosophical Transactions of the Royal Society A. 371 (2001). arXiv:1211.4846. Bibcode:2013RSPTA.37120294H. doi:10.1098/rsta.2012.0294. PMC 3785813. PMID 24043864.
- ↑ Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K. (2013). "On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr". Climate of the Past. 9 (2): 583–596. Bibcode:2013CliPa...9..583K. doi:10.5194/cp-9-583-2013.
|hdl-access=requires|hdl=(help) - ↑ Kyoung-nam Jo; Kyung Sik Woo; Sangheon Yi; Dong Yoon Yang; Hyoun Soo Lim; Yongjin Wang; Hai Cheng; R. Lawrence Edwards (March 30, 2014). "Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years". Nature. 508 (7496): 378–382. Bibcode:2014Natur.508..378J. doi:10.1038/nature13076. PMID 24695222. S2CID 2096406.
- ↑ "Thermodynamics: Albedo". NSIDC.
- ↑ "Arctic amplification". NASA. 2013.
- ↑ 32.0 32.1 "Arctic warming three times faster than the planet, report warns". Phys.org (in Turanci). 2021-05-20. Retrieved 6 October 2022.
- ↑ Rantanen, Mika; Karpechko, Alexey Yu; Lipponen, Antti; Nordling, Kalle; Hyvärinen, Otto; Ruosteenoja, Kimmo; Vihma, Timo; Laaksonen, Ari (11 August 2022). "The Arctic has warmed nearly four times faster than the globe since 1979". Communications Earth & Environment (in Turanci). 3 (1): 168. Bibcode:2022ComEE...3..168R. doi:10.1038/s43247-022-00498-3. ISSN 2662-4435. S2CID 251498876 Check
|s2cid=value (help).|hdl-access=requires|hdl=(help) - ↑ "The Arctic is warming four times faster than the rest of the world" (in Turanci). 2021-12-14. Retrieved 6 October 2022.
- ↑ Isaksen, Ketil; Nordli, Øyvind; et al. (15 June 2022). "Exceptional warming over the Barents area". Scientific Reports (in Turanci). 12 (1): 9371. Bibcode:2022NatSR..12.9371I. doi:10.1038/s41598-022-13568-5. PMC 9200822 Check
|pmc=value (help). PMID 35705593 Check|pmid=value (help). S2CID 249710630 Check|s2cid=value (help). - ↑ Damian Carrington (2022-06-15). "New data reveals extraordinary global heating in the Arctic". The Guardian (in Turanci). Retrieved 7 October 2022.
- ↑ Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science (in Turanci). 377 (6611): eabn7950. doi:10.1126/science.abn7950. ISSN 0036-8075. PMID 36074831 Check
|pmid=value (help). S2CID 252161375 Check|s2cid=value (help).|hdl-access=requires|hdl=(help) - ↑ Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info (in Turanci). Retrieved 2 October 2022.
- ↑ 39.0 39.1 Chylek, Petr; Folland, Chris; Klett, James D.; Wang, Muyin; Hengartner, Nick; Lesins, Glen; Dubey, Manvendra K. (25 June 2022). "Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models". Geophysical Research Letters (in Turanci). 49 (13). Bibcode:2022GeoRL..4999371C. doi:10.1029/2022GL099371. S2CID 250097858 Check
|s2cid=value (help). - ↑ Acosta Navarro, J.C.; Varma, V.; Riipinen, I.; Seland, Ø.; Kirkevåg, A.; Struthers, H.; Iversen, T.; Hansson, H.-C.; Ekman, A. M. L. (14 March 2016). "Amplification of Arctic warming by past air pollution reductions in Europe". Nature Geoscience (in Turanci). 9 (4): 277–281. Bibcode:2016NatGe...9..277A. doi:10.1038/ngeo2673.
- ↑ Chylek, Petr; Folland, Chris K.; Lesins, Glen; Dubey, Manvendra K.; Wang, Muyin (16 July 2009). "Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation". Geophysical Research Letters. 36 (14): L14801. Bibcode:2009GeoRL..3614801C. CiteSeerX 10.1.1.178.6926. doi:10.1029/2009GL038777. S2CID 14013240.
- ↑ Rantanen, Mika; Karpechko, Alexey Yu.; Lipponen, Antti; Nordling, Kalle; Hyvärinen, Otto; Ruosteenoja, Kimmo; Vihma, Timo; Laaksonen, Ari (2022-08-11). "The Arctic has warmed nearly four times faster than the globe since 1979". Communications Earth & Environment (in Turanci). 3 (1). doi:10.1038/s43247-022-00498-3. ISSN 2662-4435.
|hdl-access=requires|hdl=(help)
Haɗin waje
[gyara sashe | gyara masomin]- Turton, Steve (3 June 2021). "Why is the Arctic warming faster than other parts of the world? Scientists explain". WEForum.org. World Economic Forum. Archived from the original on 3 June 2021.
Samfuri:Global warmingSamfuri:Climate oscillationsSamfuri:Permafrost