Jump to content

Radiya

Daga Wikipedia, Insakulofidiya ta kyauta.
radiya
unit of plane angle (en) Fassara, dimensionless unit (en) Fassara, SI unit with special name (en) Fassara da UCUM base unit (en) Fassara
Bayanai
Defining formula (en) Fassara
In defining formula (en) Fassara
Auna yawan jiki angular measure (en) Fassara
Subdivision of this unit (en) Fassara deciradian (en) Fassara
Ma'anar radiyo
Radian raka'a ce ta ma'aunin kusurwa. Juyin juyi na da'irar yana da kwana na 2π radians.

Radiyan shi ne na'urar ma'auni . Ana nuna ta ta hanyar alamar "rad" ko, ƙasa da yawa, c (don ma'aunin madauwari). Radian ya kasance ɗayan ƙarin SI, to amma an canza shi zuwa naúrar da aka samu a cikin shekara ta alif Dari Tara da casain da biyar 1995. [1]Tsawon baka na radians yayi daidai da radiyan daga da'irar da yake sashi.[2]

Amfani[gyara sashe | gyara masomin]

Samfuri:Float box Yawancin mutanen da ke yin lissafi ko kimiyyar lissafi suna amfani da radians, maimakon digiri, saboda wasu nau'ikan lissafin, galibi a cikin trigonometry da ƙididdiga, sun fi sauƙi yayin amfani da radians maimakon digiri.[3] Don haka, yawancin lissafin da ke da alaƙa da mitar angular (kamar saurin angular ) suna amfani da radians a sakan daya.

Mutanen da ke duba ta hanyar na'urar hangen nesa ko maharbi sukan yi amfani da milliradians don kwatanta nisa kamar yadda aka gani ta hanyarsa.

Juyawa[gyara sashe | gyara masomin]

Radian 1 daidai yake da kusan 57.3°. Akwai radians 2 π (kimanin 6.28 radians) a cikin cikakken da'ira. Tsarin juya radian zuwa digiri da akasin haka shine:

ko:

kuma muna iya cewa:

.

Shafukan da ke da alaƙa[gyara sashe | gyara masomin]

  • Steradian
  • Tau, ma'aunin cikakken da'irar a cikin radian
  • da'irar raka'a

Manazarta[gyara sashe | gyara masomin]

  1. "Resolution 8 of the CGPM at its 20th Meeting (1995)". Bureau International des Poids et Mesures. Archived from the original on 2018-12-25. Retrieved 2014-09-23.
  2. International Bureau of Weights and Measures 2019, p. 151: "The CGPM decided to interpret the supplementary units in the SI, namely the radian and the steradian, as dimensionless derived units."
  3. Protter, Murray H.; Morrey, Charles B. Jr. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, p. APP-4, LCCN 76087042