Okubo algebra
Okubo algebra |
---|
A cikin algebra, alkubra na Okubo ko algebra na algebra algebra ne mai girma 8 ba tare da haɗin gwiwa ba kamar wanda Susumu Okubo yayi nazari.[1] Okubo algebras sune algebras abun da ke ciki, algebras masu sassauƙa ( A ( BA )) = ( AB ) A ), Ƙarya algebras da ake yarda da su, da haɗin gwiwa na iko, amma ba ma'amala bane, ba madadin algebras ba, kuma ba su da ƙimar ainihi.
Misalin Okubo shine algebra na 3-by-3 trace -zero matrices hadaddun, tare da samfurin X da Y da aka bayar ta aXY + bYX - Tr ( XY ) I /3 inda nake matrix na ainihi kuma a da b gamsar da a + b = 3 ab = 1. A Hermitian abubuwa samar da wani 8-girma real ba associative division aljabara . Irin wannan ginin yana aiki ga kowane alubabbar madaidaiciyar madaidaiciya akan filin da ke ɗauke da tushen haɗin kai na asali. Alkubra na Okubo algebra ne da aka gina ta wannan hanyar daga abubuwan da aka gano-sifili na algebra mai sauƙi -3 na tsakiya akan filin.[2]
Gina Para-Hurwitz algebra
[gyara sashe | gyara masomin]Abubuwan algebras da ba a haɗa su ba ana kiran su Hurwitz algebras.[3] Idan ƙasa filin K ne filin na real lambobi da kuma N ne tabbatacce-tabbataccen, sa'an nan A aka kira wani Euclidean Hurwitz aljabara .
Scalar samfurin
[gyara sashe | gyara masomin]Idan K yana da halayyar da ba ta yi daidai da 2 ba, to siffar bilinear (a, b ) =
Juyin Halitta a Hurwitz algebras
[gyara sashe | gyara masomin]Tsammani A yana da haɗin kai mai yawa, ayyana ba da izini da masu aikin ninka dama da hagu ta
Babu shakka ne involution da kuma tserar da quadratic form. Bayanin kan layi yana jaddada gaskiyar cewa rikitarwa da haɗaɗɗun haɗe -haɗe sune lamurran sa. Waɗannan masu aiki suna da kaddarorin masu zuwa:
- Ƙaddamarwa shine antiautomorphism, watau a b = b a
- a mai = N (a) 1 = wani mai
- L ( a ) = L ( a )*, R ( a ) = R ( a )*, inda * nuna mai haɗin gwiwa dangane da tsari ( , )
- Re(a b ) = Re ( b a ) inda Re x = ( x + x )/2 = ( x, 1)
- Re((a b ) c ) = Re ( a ( b c ))
- L ( a 2 ) = L ( a ) 2, R ( a 2 ) = R ( a ) 2, don haka A shine madadin algebra
An tabbatar da waɗannan kaddarorin suna farawa daga sigar asalin asalin (a b, a ) = ( a, a ) ( b, b ) :
Saitin b = 1 ko d = 1 yana samar da L ( a ) = L ( a )* da R ( c ) = R ( c )* . Don haka Re(a b ) = ( a b, 1) = ( a, b ) = ( b a, 1) = Re ( b a ) . Hakazalika (a b, c ) = ( a b, c ) = ( b, a c ) = (1, b ( a c )) = (1, ( b a ) c ) = ( b a, c ) . Don haka Re(a b ) c = (( a b ) c, 1) = ( a b, c ) = ( a, c b ) = ( a ( b c ), 1) = Re ( a ( b c )) . Ta hanyar asalin asalin N ( a ) ( c, d ) = ( a c, a d ) = ( a a c, d ) haka L ( a ) L ( a ) = N ( a ) . Aiwatar da 1 wannan yana ba a a = N ( a ) . Sauya a ta a bada wani ainihin. Sauya dabara don a a L ( a ) L ( a ) = L ( a a ) yana ba L ( a ) 2 = L ( a 2 ) .
Para-Hurwitz algebra
[gyara sashe | gyara masomin]Wani aikin ∗ ana iya bayyana shi a cikin Hurwitz algebra kamar
- x ∗ y = x y
Algebra (A, ∗) algebra ne wanda ba a saba da shi ba, wanda aka sani da para-Hurwitz algebra.[2] :484 A cikin girma 4 da 8 waɗannan para-quaternion [4] da para-octonion algebras.[3] :40,41
Para-Hurwitz algebra ya gamsar[3] :48
Conversely, wani aljabara tare da wani da ba degenerate fasali bilinear form gamsarwa wannan lissafi shi ne ko dai a para-Hurwitz aljabara ko wani takwas girma na karya-octonion aljabara.[3] :49 Hakazalika, algebra mai sassauci yana gamsarwa
ko dai aljihun Hurwitz ne, al-para-Hurwitz algebra ko algebra mai girman girma takwas.[3]
Duba Kuma
[gyara sashe | gyara masomin]- Samfuri:Eom
- Okubo, Susumu (1978), "Pseudo-quaternion and pseudo-octonion algebras", Hadronic Journal, 1 (4): 1250–1278, MR 0510100
- Susumu Okubo & J. Marshall Osborn (1981) "Algebras with nondegenerate associative symmetric bilinear forms permitting composition", Communications in Algebra 9(12): 1233–61, Samfuri:Mr and 9(20): 2015–73 Samfuri:Mr.
Manazarta
[gyara sashe | gyara masomin]- ↑ Samfuri:Harvs
- ↑ 2.0 2.1 Max-Albert Knus, Alexander Merkurjev, Markus Rost, Jean-Pierre Tignol (1998) "Composition and Triality", chapter 8 in The Book of Involutions, pp 451–511, Colloquium Publications v 44, American Mathematical Society Samfuri:Isbn
- ↑ 3.0 3.1 3.2 3.3 3.4 Okubo, Susumu (1995). Introduction to octonion and other non-associative algebras in physics. Montroll Memorial Lecture Series in Mathematical Physics. 2. Cambridge: Cambridge University Press. ISBN 0-521-47215-6. MR 1356224. Zbl 0841.17001.
- ↑ The term "para-quaternions" is sometimes applied to unrelated algebras.