Jump to content

Tranzista

Daga Wikipedia, Insakulofidiya ta kyauta.
Tranzista
Bayanai
Ƙaramin ɓangare na semiconductor device (en) Fassara da active electronic component (en) Fassara
Mabiyi semiconductor diode (en) Fassara, vacuum tube (en) Fassara da gas-filled tube (en) Fassara
Time of discovery or invention (en) Fassara Disamba 1947
Hoton Tranzisto

Tranzista Tranzisto shine na'urar semiconductor da ake amfani da ita don haɓakawa ko canza siginar din lantarki da ƙarfi. Yana daya daga cikin tubalan gina kayan lantarki na zamani.[1] Ya ƙunshi kayan semiconductor, yawanci tare da aƙalla tashoshi uku don haɗi zuwa da'irar lantarki. Wutar lantarki ko halin yanzu da ake amfani da su biyu na tashoshi na transistor suna sarrafa na yanzu ta wani tashoshi biyu. Saboda ikon sarrafawa (fitarwa) na iya zama mafi girma fiye da ikon sarrafawa (shigarwa), transistor na iya ƙara sigina. Wasu transistor ana tattara su daban-daban, amma wasu da yawa a cikin ƙaramin tsari ana samun su a cikin haɗaɗɗun da'irori. Saboda transistor sune mahimman abubuwan da ke aiki a kusan dukkanin na'urorin lantarki na zamani, mutane da yawa suna ɗaukar su ɗaya daga cikin manyan abubuwan ƙirƙira na ƙarni na 20.[2]

Masanin kimiyyar lissafi Julius Edgar Lilienfeld ya ba da shawarar ra'ayin transistor mai tasirin filin (FET) a cikin 1926, amma ba zai yiwu a gina na'urar aiki ba a lokacin.[3] Na'urar aiki ta farko ita ce transistor mai lamba da aka ƙirƙira a cikin 1947 ta masana kimiyya John Bardeen, Walter Brattain, da William Shockley a Bell Labs waɗanda suka raba lambar yabo ta Nobel a Physics na 1956 don nasarar da suka samu.[4] Mafi yawan nau'in transistor da aka fi amfani dashi shine ƙarfe-oxide-semiconductor filin-tasirin transistor (MOSFET), MOSFET an ƙirƙira shi a Bell Labs tsakanin 1955 da 1960.[5][6][7][8][9][10]

Tranzisto sun kawo sauyi a fannin na’urorin lantarki tare da share fagen samar da ƙananan rahusa da rahusa radiyo, lissafi, kwamfuta, da sauran na’urorin lantarki.

Yawancin transistor ana yin su ne daga siliki mai tsafta, wasu kuma daga germanium, amma ana amfani da wasu kayan semiconductor wasu lokuta. Transistor na iya samun nau'in caja ɗaya kawai a cikin transistor mai tasirin filin, ko yana iya samun nau'ikan caja iri biyu a cikin na'urorin transistor junction bipolar. Idan aka kwatanta da bututun injin, transistor gabaɗaya sun fi ƙanƙanta kuma suna buƙatar ƙarancin ƙarfi don aiki. Wasu bututun na'ura suna da fa'ida akan transistor a mafi girman mitar aiki ko manyan ƙarfin aiki, irin su bututun balaguron balaguro da Gyrotrons. Yawancin nau'ikan transistor ana yin su zuwa daidaitattun ƙayyadaddun bayanai ta masana'antun da yawa.

Thermionic triode, wani bututu da aka ƙirƙira a cikin 1907, ya ba da damar haɓaka fasahar rediyo da wayar tarho mai nisa. Triode, duk da haka, na'ura ce mai rauni wacce ta cinye babban adadin ƙarfi. A cikin 1909, masanin kimiyya William Eccles ya gano oscillator diode crystal.[11] Masanin kimiyyar lissafi Julius Edgar Lilienfeld ya shigar da takardar izini don transistor mai tasirin filin (FET) a cikin Kanada a cikin 1925,[12] wanda aka yi niyya azaman ingantacciyar jiha don maye gurbin triode.[13][14] Ya gabatar da takardun shaida iri ɗaya a cikin Amurka a cikin 1926[13] da 1928.

Duk da haka, bai buga wani labarin bincike game da na'urorinsa ba kuma bai buga wasu takamaiman misalan samfurin aiki ba. Saboda samar da kayan aikin semiconductor masu inganci har yanzu shekaru da yawa ba su wuce ba, da ƙaƙƙarfan ra'ayoyin amplifier na Lilienfeld ba zai sami amfani mai amfani ba a cikin 1920s da 1930s, ko da an gina irin wannan na'urar.[14] A cikin 1934, mai ƙirƙira Oskar Heil ya ba da haƙƙin mallaka irin wannan na'ura a Turai.[15]

  1. zransstor". Britannica. Retrieved January 12, 2021.
  2. "A History of the Invention of the Transistor and Where It Will Lead Us" (PDF). IEEE JOURNAL OF SOLID-STATE CIRCUITS Vol 32 No 12. December 1997.
  3. 926 – Field Effect Semiconductor Device Concepts Patented". Computer History Museum. Archived from the original on March 22, 2016. Retrieved March 25, 2016.
  4. The Nobel Prize in Physics 1956". Nobelprize.org. Nobel Media AB. Archived from the original on December 16, 2014. Retrieved December 7, 2014.
  5. Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society. 104 (9): 547. doi:10.1149/1.2428650.
  6. KAHNG, D. (1961). "Silicon-Silicon Dioxide Surface Device". Technical Memorandum of Bell Laboratories: 583–596. doi:10.1142/9789814503464_0076. ISBN 978-981-02-0209-5.
  7. Lojek, Bo (2007). History of Semiconductor Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. ISBN 978-3-540-34258-8.
  8. Huff, Howard; Riordan, Michael (September 1, 2007). "Frosch and Derick: Fifty Years Later (Foreword)". The Electrochemical Society Interface. 16 (3): 29. doi:10.1149/2.F02073IF. ISSN 1064-8208.
  9. Ligenza, J.R.; Spitzer, W.G. (1960). "The mechanisms for silicon oxidation in steam and oxygen". Journal of Physics and Chemistry of Solids. 14: 131–136. doi:10.1016/0022-3697(60)90219-5.
  10. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 120. ISBN 9783540342588.
  11. Moavenzadeh, Fred (1990). Concise Encyclopedia of Building and Construction Materials. MIT Press. ISBN 9780262132480.
  12. Lilienfeld, Julius Edgar (1927). Specification of electric current control mechanism patent application.
  13. "Method And Apparatus For Controlling Electric Currents". United States Patent and Trademark Office.
  14. Amplifier For Electric Currents". United States Patent and Trademark Office.
  15. Heil, Oskar, "Improvements in or relating to electrical amplifiers and other control arrangements and devices", Patent No. GB439457, European Patent Office, filed in Great Britain 1934-03-02, published December 6, 1935 (originally filed in Germany March 2, 1934).