Jump to content

Allurar rigakafin kwayar cuta

Daga Wikipedia, Insakulofidiya ta kyauta.
Allurar rigakafin kwayar cuta
vaccine type (en) Fassara
Bayanai
Ƙaramin ɓangare na vaccine (en) Fassara
Uses (en) Fassara viral vector (en) Fassara
COVID-19 Vaccine Vial Prop
rigakafin COVID-19 vial prop

Alurar riga kafi na kwayar cuta shine maganin rigakafi da ke amfani da kwayar cutar hoto don sadar da kwayoyin halitta ( DNA ) wanda za'a iya rubutawa ta hanyar sel mai karɓa a matsayin mRNA coding don furotin da ake so, ko antigen, don haifar da amsawar rigakafi. [1] As of Afrilu 2021, An ba da izinin amfani da alluran vector guda shida, rigakafin COVID-19 guda huɗu da alluran rigakafin cutar Ebola guda biyu. [2]

Fahimtar ƙwayoyin cuta

[gyara sashe | gyara masomin]

An gabatar da vector na farko a cikin 1972 ta hanyar injiniyan kwayoyin halitta na kwayar cutar SV40. [3] [4] An fara amfani da vector mai saurin kamuwa da cuta lokacin da aka shigar da kwayar cutar hanta ta saman antigen a cikin kwayar cutar alurar riga kafi . [5] [6] Bayan haka, wasu ƙwayoyin cuta ciki har da adenovirus, cutar da ke hade da adeno, retrovirus, cytomegalovirus, cutar Sendai, da lentiviruses an tsara su a cikin magungunan rigakafi. [7] Kwayar cutar alurar riga kafi da adenovirus sune cututtukan da aka fi amfani da su saboda ƙwaƙƙarfan martanin rigakafi da yake haifarwa. [8] [7]

An bincika haɗa ƙwayoyin cuta da yawa a cikin shirye-shiryen rigakafin tun lokacin da aka ƙirƙiri ƙwayar cutar ta 1984 a matsayin maganin rigakafi. [9] An gudanar da gwaje-gwajen asibiti na ɗan adam don rigakafin ƙwayoyin cuta na ƙwayoyin cuta da yawa waɗanda suka haɗa da cutar Zika, ƙwayoyin cuta na mura, ƙwayoyin cuta na numfashi, HIV, da zazzabin cizon sauro, kafin allurar rigakafin da ke kaiwa SARS-CoV-2, wanda ke haifar da COVID-19 . [1] [10]

An yi amfani da alluran rigakafin cutar Ebola guda biyu da suka yi amfani da fasahar vector na hoto don magance barkewar cutar Ebola a yammacin Afirka (2013-2016), da kuma a Jamhuriyar Demokradiyyar Kongo (2018-2020) . [10] An amince da rigakafin rVSV-ZEBOV don amfanin likita a cikin Tarayyar Turai a watan Nuwamba 2019, [11] da kuma a cikin Disamba 2019 don Amurka. [12] [13] An amince da Zabdeno/Mvabea don amfani da magani a cikin Tarayyar Turai a cikin Yuli 2020. [14] [15] [16]

Magungunan ƙwayoyin cuta na ƙwayoyin cuta suna ba da damar bayyanar antigen a cikin sel kuma suna haifar da amsawar kwayar halitta mai ƙarfi ta cytotoxic T, sabanin allurar rigakafi waɗanda ke ba da kariya ta ɗan adam kawai. [7] [17] Domin canja wurin lambar lambar nucleic acid don takamaiman furotin zuwa tantanin halitta, alluran rigakafin suna amfani da bambance-bambancen ƙwayoyin cuta azaman vector. Wannan tsari yana taimakawa wajen samar da rigakafi daga cutar, wanda ke taimakawa wajen kare mutane daga kamuwa da cutar. Alurar rigakafin ƙwayoyin cuta ba sa haifar da kamuwa da cuta tare da ko dai kwayar cutar da aka yi amfani da ita azaman vector ko tushen antigen. [18] Halittar kwayoyin halittar da take bayarwa ba sa shiga cikin kwayoyin halittar mutum . [10]

Yawancin ƙwayoyin cuta na ƙwayoyin cuta ba su da kwayoyin halittar da ake buƙata, suna sa su kasa yin kwafi. [7] Domin a yarda da shi sosai kuma a amince da shi don amfani da likita, haɓaka rigakafin ƙwayoyin cuta na ƙwayoyin cuta yana buƙatar babban matakin amincin ilimin halitta. Saboda haka, ƙwayoyin cuta marasa cuta ko ƙananan ƙwayoyin cuta galibi ana zaɓar su. [19]

Magungunan ƙwayoyin cuta na ƙwayoyin cuta suna da fa'ida akan sauran nau'ikan alluran rigakafi dangane da ƙwayoyin cuta waɗanda suka samar da godiya ga halayensu na rigakafi, kwanciyar hankali na rigakafi, da aminci. [18] [7] Takamaiman kaddarorin rigakafi sun haɗa da ingantacciyar hanyar watsa kwayoyin halitta, takamaiman isar da kwayoyin halitta zuwa sel masu niyya, da kuma ikon haifar da martani mai ƙarfi na rigakafi. [19] An ƙara haɓaka rigakafi ta hanyar abubuwan da ke tattare da ƙwayoyin cuta waɗanda ke motsa hanyoyin rigakafi na asali, [20] [21] [22] don haka amfani da adjuvant ba lallai ba ne. [5] Maimaitawa vectors suna yin kwaikwayon kamuwa da cuta na halitta, wanda ke motsa sakin cytokines da haɗin gwiwar kwayoyin halitta wanda ke haifar da tasiri mai karfi. [23] Ƙaddamar da hanyoyin rigakafi na asali yana da mahimmanci don ƙarfafa hanyoyin ƙasa da martanin rigakafi masu dacewa. [5]

Bugu da ƙari, ana iya samar da ƙwayoyin cuta na ƙwayoyin cuta a cikin adadi mai yawa akan farashi mai rahusa, wanda ke ba da damar amfani da shi a cikin ƙasashe masu ƙarancin kuɗi.[24]

Viral vectors

[gyara sashe | gyara masomin]

Ma'aikatan Adenovirus suna da amfani da ingantaccen haɓakawa mai girma, maganganun transgene, da kuma tropism mai girma, kuma suna iya cutar da kwayoyin halitta da masu rarrabawa. Rashin hasara shine mutane da yawa suna da riga-kafi ga adenoviruses daga bayyanar da ta gabata. [7] [25] [26] [27] Yaɗuwar cutar da Ad5 a cikin yawan jama'ar Amurka ya kai 40%-45%. [28] Yawancin ƙwayoyin cuta na Adenovirus ba su da kwafi-rauni saboda gogewar yankin E1A da E1B. A halin yanzu, shawo kan tasirin ƙwayoyin rigakafin ƙwayoyin cuta na musamman na adenovirus ana binciko su ta hanyar likitocin rigakafi. [29] Waɗannan karatun sun haɗa da dabaru da yawa kamar ƙirƙira madadin serotypes na Adenovirus, rarrabuwar hanyoyin rigakafi, da amfani da hanyoyin haɓaka na farko. [25] [30] Ana amfani da adenovirus serotype 5 sau da yawa saboda ana iya samar da shi cikin sauƙi a cikin manyan titers . [7]

Tun daga Afrilu 2021, an ba da izinin allurar rigakafin cutar adenovirus guda huɗu don COVID-19 aƙalla ƙasa ɗaya:

  • Alurar rigakafin Oxford-AstraZeneca tana amfani da chimpanzee adenovirus ChAdOx1 . [31] [32] [33]
  • Sputnik V yana amfani da ɗan adam adenovirus serotype 26 don harbin farko, da serotype 5 na biyu.[34][35]
  • Alurar rigakafin Janssen yana amfani da serotype 26. .[36][37][38]
  • Convidecia yana amfani da serotype 5. [39][40]

Zabdeno, kashi na farko na maganin rigakafin cutar Ebola na Zabdeno/Mvabea, an samo shi daga ɗan adam adenovirus serotype 26, yana bayyana glycoprotein na cutar Ebola bambance-bambancen Mayinga.[41] Dukkanin allurai biyun nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan nau'ikan cutar Ebola ne.[14]

Tare da karuwar yaduwar rigakafin adenoviral, alluran rigakafi guda biyu, Ad26. COV2. S da ChadOx1-nCoV-19, an danganta su da rashin lafiyan jini, thrombosis tare da ciwo na thrombocytopenia (TTS). [5]

Alurar riga kafi

[gyara sashe | gyara masomin]

Kwayar cutar alurar riga kafi wani bangare ne na dangin poxvirus . Wata cuta ce babba, mai rikitarwa, kuma mai lullube wacce aka yi amfani da ita a baya don rigakafin cutar sankarau. [7] Girman ƙwayar ƙwayar cuta ta alurar riga kafi yana ba da damar babban yuwuwar shigar da kwayoyin halittar waje. [7] An ɓullo da nau'ikan ƙwayoyin cuta da yawa waɗanda suka haɗa da nau'ikan kwafi-ƙwararru da ƙarancin kwafi. [7]

An gyara maganin rigakafi Ankara

[gyara sashe | gyara masomin]

Modified Vaccinia Ankara (MVA) nau'in wanda aka yi amfani da shi don maganin ƙwayar cuta. [7] Janssen Pharmaceutials da Bavarian Nordic ne suka samar da tsarin rigakafin cutar Ebola da Hukumar Tarayyar Turai ta amince da shi, kuma tana amfani da fasahar MVA a cikin maganin rigakafinta na biyu na Mvabea (MVA-BN-Filo). [14][42]

Vesicular stomatitis cutar

[gyara sashe | gyara masomin]

Vesicular stomatitis virus (VSV) an gabatar dashi azaman maganin rigakafi a ƙarshen 1990s. [43] A cikin mafi yawan ƙwayoyin cuta na VSV, attenuation yana ba da kariya daga kamuwa da cutar. [44] VSV kwayar cutar RNA ce kuma wani bangare ne na dangin Rhabdoviridae . [43] Kwayoyin halittar VSV sun haɗa don nucleocapsid, phosphoprotein, matrix, glycoprotein, da kuma sunadaran RNA polymerase mai dogaro da RNA. [43]

An yarda da maganin rVSV-ZEBOV, wanda aka sani da Ervebo, a matsayin maganin rigakafin cutar Ebola don amfani da magani ta FDA a cikin 2019. [1] [45] Alurar rigakafi recombinant ne, mai kwafi-ƙwaƙwalwar rigakafi [46] wanda ya ƙunshi ƙwayoyin cuta na vesicular stomatitis. [47] An maye gurbin kwayar halittar VSV ambulan glycoprotein da wannan daga Kikwit 1995 Zaire nau'in cutar Ebola . [48] [49] [50]

Hanyoyin gudanarwa

[gyara sashe | gyara masomin]

Allurar cikin tsoka ita ce hanyar da aka saba amfani da ita don gudanar da maganin rigakafi. [4] Gabatar da hanyoyi daban-daban don yin rigakafi na ƙwayoyin cuta na ƙwayoyin cuta na iya haifar da rigakafi na mucosal a wurin gudanarwa, ta yadda za a iyakance cututtuka na numfashi ko na ciki. [51] [52] Har ila yau, ana yin nazari kan yadda za a iya amfani da waɗannan hanyoyi daban-daban don shawo kan illolin takamaiman ƙwayoyin rigakafin da ke iyakance amfani da waɗannan alluran rigakafin. [25] Waɗannan hanyoyin sun haɗa da intranasal, [53] [54] na baka, intradermal, da kuma rigakafin iska. [55] [56]

Kara karantawa

[gyara sashe | gyara masomin]

 

  • Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AV, Dorrell L (August 2016). "Viral vectors as vaccine platforms: from immunogenicity to impact". Current Opinion in Immunology. 41: 47–54. doi:10.1016/j.coi.2016.05.014. PMID 27286566. S2CID 12661335. Archived from the original on 2021-05-04. Retrieved 2023-01-22.
  1. 1.0 1.1 1.2 Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A (August 2020). "New viral vectors for infectious diseases and cancer". Seminars in Immunology. 50: 101430. doi:10.1016/j.smim.2020.101430. PMID 33262065. S2CID 227251541. Cite error: Invalid <ref> tag; name "Sasso 101430" defined multiple times with different content
  2. Wang F, Qin Z, Lu H, He S, Luo J, Jin C, Song X (July 2019). "Clinical translation of gene medicine". The Journal of Gene Medicine. 21 (7): e3108. doi:10.1002/jgm.3108. PMID 31246328. S2CID 195695440.
  3. Jackson DA, Symons RH, Berg P (October 1972). "Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli". Proceedings of the National Academy of Sciences of the United States of America. 69 (10): 2904–2909. Bibcode:1972PNAS...69.2904J. doi:10.1073/pnas.69.10.2904. PMC 389671. PMID 4342968.
  4. 4.0 4.1 Travieso T, Li J, Mahesh S, Mello JD, Blasi M (July 2022). "The use of viral vectors in vaccine development". npj Vaccines. 7 (1): 75. doi:10.1038/s41541-022-00503-y. PMC 9253346 Check |pmc= value (help). PMID 35787629 Check |pmid= value (help). Cite error: Invalid <ref> tag; name "The use of viral vectors in vaccine" defined multiple times with different content
  5. 5.0 5.1 5.2 5.3 McCann, Naina; O'Connor, Daniel; Lambe, Teresa; Pollard, Andrew J (2022-08-01). "Viral vector vaccines". Current Opinion in Immunology (in Turanci). 77: 102210. doi:10.1016/j.coi.2022.102210. ISSN 0952-7915. PMC 9612401 Check |pmc= value (help). PMID 35643023 Check |pmid= value (help). Cite error: Invalid <ref> tag; name ":5" defined multiple times with different content
  6. Smith, Geoffrey L.; Mackett, Michael; Moss, Bernard (1983). "Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen". Nature (in Turanci). 302 (5908): 490–495. Bibcode:1983Natur.302..490S. doi:10.1038/302490a0. ISSN 1476-4687. PMID 6835382. S2CID 4266888. Archived from the original on 2023-02-16. Retrieved 2023-02-16.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 Ura T, Okuda K, Shimada M (July 2014). "Developments in Viral Vector-Based Vaccines". Vaccines. 2 (3): 624–641. doi:10.3390/vaccines2030624. PMC 4494222. PMID 26344749. Cite error: Invalid <ref> tag; name "Ura 624–641" defined multiple times with different content
  8. Mackett M, Smith GL, Moss B (December 1982). "Vaccinia virus: a selectable eukaryotic cloning and expression vector". Proceedings of the National Academy of Sciences of the United States of America. 79 (23): 7415–7419. Bibcode:1982PNAS...79.7415M. doi:10.1073/pnas.79.23.7415. PMC 347350. PMID 6296831.
  9. Humphreys IR, Sebastian S (January 2018). "Novel viral vectors in infectious diseases". Immunology. 153 (1): 1–9. doi:10.1111/imm.12829. PMC 5721250. PMID 28869761.
  10. 10.0 10.1 10.2 "Understanding and Explaining Viral Vector COVID-19 Vaccines". U.S. Centers for Disease Control and Prevention. 25 February 2021. Archived from the original on 2 February 2021. Retrieved 2 April 2021. Cite error: Invalid <ref> tag; name ":0" defined multiple times with different content
  11. "Ervebo EPAR". European Medicines Agency (EMA). 12 December 2019. Archived from the original on 8 March 2021. Retrieved 1 July 2020. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  12. "First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response". U.S. Food and Drug Administration (FDA). 19 December 2019. Archived from the original on 20 December 2019. Retrieved 19 December 2019. This article incorporates text from this source, which is in the public domain.
  13. "Ervebo". U.S. Food and Drug Administration (FDA). 19 December 2019. Archived from the original on 14 February 2021. Retrieved 1 July 2020.
  14. 14.0 14.1 14.2 "Johnson & Johnson Announces European Commission Approval for Janssen's Preventive Ebola Vaccine" (Press release). Johnson & Johnson. 1 July 2020. Archived from the original on 22 May 2022. Retrieved 16 July 2020.
  15. "Zabdeno EPAR". European Medicines Agency (EMA). 26 May 2020. Archived from the original on 23 July 2020. Retrieved 23 July 2020.
  16. "Mvabea EPAR". European Medicines Agency (EMA). 26 May 2020. Archived from the original on 23 July 2020. Retrieved 23 July 2020.
  17. Li JX, Hou LH, Meng FY, Wu SP, Hu YM, Liang Q, et al. (March 2017). "Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial". The Lancet. Global Health. 5 (3): e324–e334. doi:10.1016/S2214-109X(16)30367-9. PMID 28017642.
  18. 18.0 18.1 Deng, Shaofeng; Liang, Hui; Chen, Pin; Li, Yuwan; Li, Zhaoyao; Fan, Shuangqi; Wu, Keke; Li, Xiaowen; Chen, Wenxian; Qin, Yuwei; Yi, Lin; Chen, Jinding (2022-07-18). "Viral Vector Vaccine Development and Application during the COVID-19 Pandemic". Microorganisms (in Turanci). 10 (7): 1450. doi:10.3390/microorganisms10071450. ISSN 2076-2607. PMC 9317404 Check |pmc= value (help). PMID 35889169 Check |pmid= value (help). Cite error: Invalid <ref> tag; name ":6" defined multiple times with different content
  19. 19.0 19.1 Ura, Takehiro; Okuda, Kenji; Shimada, Masaru (2014-07-29). "Developments in Viral Vector-Based Vaccines". Vaccines (in Turanci). 2 (3): 624–641. doi:10.3390/vaccines2030624. ISSN 2076-393X. PMC 4494222. PMID 26344749. Cite error: Invalid <ref> tag; name "mdpi.com" defined multiple times with different content
  20. Dempsey, Alan; Bowie, Andrew G. (May 2015). "Innate immune recognition of DNA: A recent history". Virology (in Turanci). 479-480: 146–152. doi:10.1016/j.virol.2015.03.013. PMC 4424081. PMID 25816762.
  21. Kell, Alison M.; Gale, Michael (May 2015). "RIG-I in RNA virus recognition". Virology (in Turanci). 479-480: 110–121. doi:10.1016/j.virol.2015.02.017. PMC 4424084. PMID 25749629.
  22. Akira, Shizuo; Uematsu, Satoshi; Takeuchi, Osamu (February 2006). "Pathogen Recognition and Innate Immunity". Cell (in Turanci). 124 (4): 783–801. doi:10.1016/j.cell.2006.02.015. PMID 16497588. S2CID 14357403.
  23. Robert-Guroff, Marjorie (December 2007). "Replicating and non-replicating viral vectors for vaccine development". Current Opinion in Biotechnology (in Turanci). 18 (6): 546–556. doi:10.1016/j.copbio.2007.10.010. PMC 2245896. PMID 18063357.
  24. Schrauf, Sabrina; Tschismarov, Roland; Tauber, Erich; Ramsauer, Katrin (2020). "Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections". Frontiers in Immunology. 11: 592. doi:10.3389/fimmu.2020.00592. ISSN 1664-3224. PMC 7179680. PMID 32373111. Samfuri:Creative Commons text attribution notice
  25. 25.0 25.1 25.2 Fausther-Bovendo H, Kobinger GP (2014-10-03). "Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?". Human Vaccines & Immunotherapeutics. 10 (10): 2875–2884. doi:10.4161/hv.29594. PMC 5443060. PMID 25483662. Cite error: Invalid <ref> tag; name "Fausther-Bovendo 2875–2884" defined multiple times with different content
  26. Barouch DH, Kik SV, Weverling GJ, Dilan R, King SL, Maxfield LF, et al. (July 2011). "International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations". Vaccine. 29 (32): 5203–5209. doi:10.1016/j.vaccine.2011.05.025. PMC 3138857. PMID 21619905.
  27. Pinschewer, D. D. (2017-08-08). "Virally vectored vaccine delivery: medical needs, mechanisms, advantages and challenges". Swiss Medical Weekly (in Turanci). 147 (3132): w14465. doi:10.4414/smw.2017.14465. ISSN 1424-7860. PMID 28804866. Archived from the original on 2023-01-05. Retrieved 2023-01-05.
  28. Pichla-Gollon, Susan L.; Lin, Shih-Wen; Hensley, Scott E.; Lasaro, Marcio O.; Herkenhoff-Haut, Larissa; Drinker, Mark; Tatsis, Nia; Gao, Guang-Ping; Wilson, James M.; Ertl, Hildegund C. J.; Bergelson, Jeffrey M. (June 2009). "Effect of Preexisting Immunity on an Adenovirus Vaccine Vector: In Vitro Neutralization Assays Fail To Predict Inhibition by Antiviral Antibody In Vivo". Journal of Virology (in Turanci). 83 (11): 5567–5573. doi:10.1128/JVI.00405-09. ISSN 0022-538X. PMC 2681979. PMID 19279092.
  29. Tatsis N, Ertl HC (October 2004). "Adenoviruses as vaccine vectors". Molecular Therapy. 10 (4): 616–629. doi:10.1016/j.ymthe.2004.07.013. PMC 7106330. PMID 15451446.
  30. "149. Nasal Delivery of Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Quality of the Immune Response". Molecular Therapy. 15: S58. May 2007. doi:10.1016/s1525-0016(16)44355-8. ISSN 1525-0016.
  31. Samfuri:ClinicalTrialsGov
  32. "A Phase 2/3 study to determine the efficacy, safety and immunogenicity of the candidate Coronavirus Disease (COVID-19) vaccine ChAdOx1 nCoV-19". EU Clinical Trials Register. European Union. 21 April 2020. EudraCT 2020-001228-32. Archived from the original on 5 October 2020. Retrieved 3 August 2020.
  33. Chauhan, Anil; Agarwal, Amit; Jaiswal, Nishant; Singh, Meenu (November 2020). "ChAdOx1 nCoV-19 vaccine for SARS-CoV-2". The Lancet (in Turanci). 396 (10261): 1485–1486. doi:10.1016/S0140-6736(20)32271-6. PMC 7832915. PMID 33160563.
  34. Corum J, Carl Z (8 January 2021). "How Gamaleya's Vaccine Works". The New York Times. Archived from the original on 20 April 2021. Retrieved 27 January 2021.
  35. Samfuri:ClinicalTrialsGov
  36. Samfuri:ClinicalTrialsGov
  37. Samfuri:ClinicalTrialsGov
  38. FDA Briefing Document Janssen Ad26.COV2.S Vaccine for the Prevention of COVID-19 (PDF) (Report). U.S. Food and Drug Administration (FDA). Archived from the original on 2021-04-29. Retrieved 2021-04-02.
  39. Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. (August 2020). "Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial". Lancet. 396 (10249): 479–488. doi:10.1016/S0140-6736(20)31605-6. PMC 7836858. PMID 32702299.
  40. Samfuri:ClinicalTrialsGov
  41. Samfuri:ClinicalTrialsGov
  42. "Ebola Vaccine Regimen Zabdeno (Ad26.ZEBOV) and Mvabea (MVA-BN-Filo)". www.precisionvaccinations.com (in Turanci). Archived from the original on 2023-02-16. Retrieved 2023-02-16.
  43. 43.0 43.1 43.2 Roberts A, Kretzschmar E, Perkins AS, Forman J, Price R, Buonocore L, et al. (June 1998). "Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge". Journal of Virology. 72 (6): 4704–4711. doi:10.1128/JVI.72.6.4704-4711.1998. PMC 109996. PMID 9573234.
  44. Humphreys, Ian R.; Sebastian, Sarah (January 2018). "Novel viral vectors in infectious diseases". Immunology (in Turanci). 153 (1): 1–9. doi:10.1111/imm.12829. PMC 5721250. PMID 28869761.
  45. Woolsey C, Geisbert TW (December 2021). "Current state of Ebola virus vaccines: A snapshot". PLOS Pathogens. 17 (12): e1010078. doi:10.1371/journal.ppat.1010078. PMC 8659338 Check |pmc= value (help). PMID 34882741 Check |pmid= value (help).
  46. Marzi A, Ebihara H, Callison J, Groseth A, Williams KJ, Geisbert TW, Feldmann H (November 2011). "Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy". The Journal of Infectious Diseases. 204 (Suppl 3): S1066–S1074. doi:10.1093/infdis/jir348. PMC 3203393. PMID 21987743.
  47. "Ervebo (Ebola Zaire Vaccine, Live) Suspension for intramuscular injection" (PDF). Merck Sharp & Dohme. Archived from the original on 2020-03-29. Retrieved 2021-04-02.
  48. Martínez-Romero C, García-Sastre A (November 2015). "Against the clock towards new Ebola virus therapies". Virus Research. 209: 4–10. doi:10.1016/j.virusres.2015.05.025. PMID 26057711.
  49. Choi WY, Hong KJ, Hong JE, Lee WJ (January 2015). "Progress of vaccine and drug development for Ebola preparedness". Clinical and Experimental Vaccine Research. 4 (1): 11–16. doi:10.7774/cevr.2015.4.1.11. PMC 4313103. PMID 25648233.
  50. Regules JA, Beigel JH, Paolino KM, Voell J, Castellano AR, Hu Z, et al. (January 2017). "A Recombinant Vesicular Stomatitis Virus Ebola Vaccine". The New England Journal of Medicine. 376 (4): 330–341. doi:10.1056/NEJMoa1414216. PMC 5408576. PMID 25830322.
  51. Hassan AO, Shrihari S, Gorman MJ, Ying B, Yuan D, Raju S, et al. (July 2021). "An intranasal vaccine durably protects against SARS-CoV-2 variants in mice". Cell Reports. 36 (4): 109452. doi:10.1016/j.celrep.2021.109452. PMC 8270739 Check |pmc= value (help). PMID 34289385 Check |pmid= value (help).
  52. Xu F, Wu S, Yi L, Peng S, Wang F, Si W, et al. (December 2022). "Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques". Emerging Microbes & Infections. 11 (1): 438–441. doi:10.1080/22221751.2022.2030199. PMC 8803102 Check |pmc= value (help). PMID 35094672 Check |pmid= value (help).
  53. Chavda, Vivek P.; Vora, Lalitkumar K.; Pandya, Anjali K.; Patravale, Vandana B. (November 2021). "Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management". Drug Discovery Today (in Turanci). 26 (11): 2619–2636. doi:10.1016/j.drudis.2021.07.021. PMC 8319039 Check |pmc= value (help). PMID 34332100 Check |pmid= value (help).
  54. Rauch, Susanne; Jasny, Edith; Schmidt, Kim E.; Petsch, Benjamin (2018-09-19). "New Vaccine Technologies to Combat Outbreak Situations". Frontiers in Immunology. 9: 1963. doi:10.3389/fimmu.2018.01963. ISSN 1664-3224. PMC 6156540. PMID 30283434.
  55. de Gruijl, Tanja D.; Ophorst, Olga J. A. E.; Goudsmit, Jaap; Verhaagh, Sandra; Lougheed, Sinéad M.; Radosevic, Katarina; Havenga, Menzo J. E.; Scheper, Rik J. (2006-08-15). "Intradermal Delivery of Adenoviral Type-35 Vectors Leads to High Efficiency Transduction of Mature, CD8+ T Cell-Stimulating Skin-Emigrated Dendritic Cells". The Journal of Immunology (in Turanci). 177 (4): 2208–2215. doi:10.4049/jimmunol.177.4.2208. ISSN 0022-1767. PMID 16887980. S2CID 25279434. Archived from the original on 2023-02-02. Retrieved 2023-01-05.
  56. Liebowitz D, Gottlieb K, Kolhatkar NS, Garg SJ, Asher JM, Nazareno J, et al. (April 2020). "Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study". The Lancet. Infectious Diseases. 20 (4): 435–444. doi:10.1016/S1473-3099(19)30584-5. PMID 31978354. S2CID 210892802.