Jump to content

Ma'aunin gurɓataccen iska

Daga Wikipedia, Insakulofidiya ta kyauta.
Na'urori masu sa ido kan ingancin iska a Port Pirie, Kudancin Australia

Ma'aunin gurɓataccen iska shine tsari na tattarawa da auna abubuwan da ke cikin gurɓatawar iska, musamman iskar gas da ƙwayoyin cuta. Na'urorin farko da akayi amfani dasu don auna gurɓata sun haɗa da ma'aunin ruwan sama (a cikin nazarin ruwan sama na acid), sigogi na Ringelmann don auna hayaki, da masu tara tururi da ƙura masu sauƙi da aka sani da ma'anonin ajiya. Auna gurɓataccen iska na zamani yana da sarrafa kansa kuma ana aiwatar dashi ta amfani da na'urori da dabarun daban-daban. Wadannan sun fito ne daga bututun gwajin da aka sani da bututun watsawa har zuwa na'urori masu mahimmanci na sinadarai da na jiki waɗanda ke bada kusan ma'aunin gurɓataccen lokaci, waɗanda ake amfani da su don samar da alamun ingancin iska.

Muhimmancin auna

[gyara sashe | gyara masomin]
Ana iya amfani da aikace-aikacen wayar salula, bisa ga ma'aunin gurɓataccen iska na ainihi, don neman hanyoyin da basu da gurɓata ta hanyar birni.

Abubuwa da yawa ne ke haifar da gurɓata iska. A cikin birane, yana iya ƙunsar abubuwa dayawa, musamman abubuwa masu ƙarfi da ruwa (kamar su soot daga injuna da toka mai tashi dake tserewa daga incinerators), da iskar gas daban-daban (yawanci sulfur dioxide, nitrogen oxides, da carbon monoxide, duk suna da alaƙa da konewa man fetur). Wadannan nau'o'in gurɓataccen yanayi suna da tasiri daban-daban a kan lafiyar mutane, a kan duniyar halitta (ruwa, ƙasa, amfanin gona, bishiyoyi, da sauran ciyayi), da kuma a kan yanayin da aka gina. Auna gurɓataccen iska shine mataki na farko na gano abubuwan dake haifar dashi sannan ragewa ko daidaita su don kiyaye ingancin iska a cikin iyakokin doka (wanda masu tsarawa kamar Hukumar Kare Muhalli a Amurka suka ba da umarni) ko jagororin ba da shawara da hukumomi kamar Hukumar Lafiya ta Duniya (WHO) suka ba da shawarar. A cewar WHO, birane sama da 6000 a cikin ƙasashe 117 yanzu suna sa ido kan ingancin iska.

Nau'o'in aunawa

[gyara sashe | gyara masomin]

Ana auna gurɓataccen iska (a gaba ɗaya) ta hanyoyi biyu daban-daban, batare da la'akari ba ko kuma a hankali.[1]

Ma'auni mai ma'ana

[gyara sashe | gyara masomin]
Wani bututun watsawa misali ne na mai sa ido kan gurɓataccen iska.

Na'urorin da ba'a amfani dasu ba suna da sauƙi kuma suna da tsada.[2] Suna aiki ta hanyar tsomawa ko kuma a wasu lokuta tattara samfurin iska, wanda dole ne a bincika shi a cikin dakin gwaje-gwaje. Ɗaya daga cikin siffofin da akafi sani da ma'auni mai wucewa shine bututun watsawa, wanda yayi kama da bututun gwajin dakin gwaje-gwaje kuma an ɗaure shi da wani abu kamar fitilar fitila don shawo kan wani ko fiye da takamaiman iskar gurbataccen mai ban sha'awa. Bayan wani lokaci, ana cire bututun kuma a aika shi zuwa dakin gwaje-gwaje don bincike. Ma'aunin ajiya, ɗaya daga cikin tsofaffin nau'ikan ma'aunin gurɓataccen yanayi, wani nau'in na'urar da bata da amfani. Sune manyan bututu waɗanda ke tattara soot ko wasu ƙwayoyin kuma suna fitar dasu cikin kwalabe na samfurori, wanda, sake dole ne a bincika su a cikin dakin gwaje-gwaje.[3]

Ma'auni mai aiki

[gyara sashe | gyara masomin]

Na'urorin auna masu aiki suna sarrafa kansu ko rabin-automated kuma suna da rikitarwa da ƙwarewa fiye da na'urorin da ba su da amfani, kodayake ba koyaushe suke da hankali ko abin dogaro ba.[2] Suna amfani da magoya baya don tsotsewa cikin iska, tace shi, kuma ko dai bincika shi ta atomatik a can sannan kuma ko tattara da adana shi don bincike daga baya a cikin dakin gwaje-gwaje. Sensors masu aiki suna amfani da kodai hanyoyin jiki ko na sunadarai. Hanyoyin jiki suna auna samfurin iska batare da canza shi ba, alal misali, ta hanyar ganin yawan wani nau'in haske da yake sha. Hanyoyin sunadarai suna canza samfurin ta wata hanya, ta hanyar halayen sunadarai, kuma suna auna hakan. Yawancin na'urori masu auna sigina masu sarrafa kansu misalai ne na ma'auni mai aiki.[1]

Sensors na ingancin iska

[gyara sashe | gyara masomin]

Sensors na ingancin iska sun fito ne daga ƙananan na'urorin hannu zuwa manyan tashoshin sa ido a cikin birane, da na'urori masu sa ido na nesa da akayi amfani dasu a kan jiragen sama da tauraron dan adam na sararin samaniya.

Sensors na ingancin iska na mutum

[gyara sashe | gyara masomin]
Air Quality Egg air pollution monitor showing the sensor and circuit board
Kwayar Ingancin Air misali ne na firikwensin gurɓata iska mai tsada.

A wani ƙarshen sikelin, akwai ƙananan, masu arha (kuma wani lokacin ana iya sawa), na'urori masu auna gurɓata iska da ke da alaƙa da Intanet, kamar Air Quality Egg da PurpleAir . [4] Wadannan samfurori da iskar gas koyaushe kuma suna samar da daidaitattun daidaito, kusan ainihin lokacin da za a iya nazarin su ta hanyar aikace-aikacen wayar salula.[5] Hakanan ana iya amfani da bayanan su ta hanyar Jama'a, ko dai shi kaɗai ko tare da wasu bayanan gurɓataccen yanayi, don gina taswirar gurɓatawar wurare masu yawa.[6][7] Ana iya amfani da su don yanayin cikin gida da na waje kuma yawancin suna mai da hankali kan auna nau'ikan gurɓataccen iska guda biyar: ozone, kwayoyin halitta, carbon monoxide, sulfur dioxide, da nitrogen dioxide.[8] Wasu suna auna abubuwan da ba'a saba amfani dasu ba kamar su radon gas da formaldehyde.[9]

Sensors like this were once expensive, but the 2010s saw a trend towards cheaper portable devices that can be worn by individuals to monitor their local air quality levels, which are now sometimes informally referred to as low-cost sensors (LCS).[10][11] A recent review by the European Commission's Joint Research Center identified 112 examples, made by 77 different manufacturers

Sensors na mutum na iya bada ƙarfi ga mutane da al'ummomi don fahimtar yanayin bayyanar su da haɗari daga gurɓataccen iska.[12] Misali, ƙungiyar bincike da William Griswold ya jagoranta a UCSD ta bada na'urori masu auna sigina na gurɓata iska ga masu tafiya 16, kuma sun sami "kwari na birane" inda gine-gine suka kama gurɓata. Kungiyar ta kuma gano cewa fasinjoji a cikin bas suna da bayyanar da tafi na motoci.[13]

Kula da gurɓataccen gurɓatawar ƙasa

[gyara sashe | gyara masomin]
EkoSłupek air pollution sensor in Poland.
Wani firikwensin gurɓata iska na EkoSłupek a Poland. Hasken kore yana nuna ingancin iska mai kyau a kusa.

Ba kamar masu sa ido masu tsada ba, waɗanda ake ɗauka daga wuri zuwa wuri, masu sa ido na tsaye suna cigaba da gwadawa da auna ingancin iska a wani wuri, birni. Wuraren jama'a kamar tashoshin jirgin kasa masu aiki a wasu lokuta suna da masu sa ido kan ingancin iska da aka gyara har abada tare da dandamali don auna matakan nitrogen dioxide da sauran gurbatawa.[14] An tsara wasu masu sa ido don bada ra'ayi nan da nan game da ingancin iska na gida. A Poland, masu sa ido kan iska na EkoSłupek suna auna kewayon iskar gas da ƙwayoyin cuta kuma suna da ƙananan fitilu a saman waɗanda ke canza launi daga ja zuwa kore don nuna yadda iska ke da lafiya a kusa.[15]

Kula da gurɓataccen yanayi

[gyara sashe | gyara masomin]
Tashar sa ido kan gurɓataccen iska a Shaftesbury Avenue, London

A gefen ƙarshen bakan daga na'urori masu auna sigina masu tsada sune manyan, masu tsada sosai, tashoshin sa ido na kan titi waɗanda ke cigaba da gwada gurbataccen abubuwa daban-daban da ake samu a cikin iska na birane don hukumomin gida kuma waɗanda suka zama tsarin sa ido na birni kamar London Air Quality Network [16] da kuma cibiyar sadarwa ta Burtaniya da ake kira Automatic Urban and Rural Network (AURN [17]). A Amurka, EPA tana kula da ajiyar bayanan ingancin iska ta hanyar Air Quality System (AQS), inda take adana bayanai daga masu saka idanu sama da 10,000.[18] Hukumar Kula da Muhalli ta Turai tana tattara bayanan ingancin iska daga tashoshin sa ido 3,500 a fadin nahiyar.[19]

Ma'aunin da na'urori masu auna sigina suka yi kamar waɗannan, waɗanda suka fi dacewa, suma suna kusa da ainihin lokacin kuma ana amfani da su don samar da ƙididdigar ingancin iska (AQIs). Tsakanin matsanancin nau'o'i biyu na manyan na'urori masu auna sigina da ƙananan na'urorin auna amfani da su sune matsakaici, masu saka idanu masu ɗaukar hoto (wani lokacin ana ɗora su a cikin manyan lokuta masu juyawa) har ma da gina su cikin motocin samfurori na "smog-mobile".

Kwanan nan, tsarin sa ido kan gurɓataccen iska ya fito ne a matsayin hanyar da ta dace don saka idanu kan ingancin iska, ta amfani da na'urori masu auna sigina da aka ɗora a kan taksi, bas, trams, da sauran motoci.[20] Musamman, bas din sun sami kulawa mai yawa a matsayin dandalin wayar hannu saboda wadatarsu dayawa da kuma faɗakarwa da ke tattare da ƙasa.[21]

Kulawa daga nesa

[gyara sashe | gyara masomin]

Hakanan ana iya auna ingancin iska daga nesa, daga iska, ta hanyar Lidar, [22] drones, [23] da tauraron dan adam, ta hanyar hanyoyin kamar daidaitawar gas. Daga cikin farkon kokarin sa ido kan gurɓataccen tauraron dan adam sune GOME (Global ozone Monitoring Experiment), wanda ya auna matakan ozone na duniya (tropospheric) daga ESA European Remote Sensing Satellite (ERS-2) a cikin 1995, da kuma NASA's MAPS (Mapping Pollution with Satellites), wanda yaauna rarraba carbon monoxide a cikin ƙananan yanayi na Duniya, kuma a cikin 1990s.[24][25]

Auna gurɓataccen iska a New Delhi a cikin 2016 ta amfani da kayan aikin Multi-angle Imaging SpectroRadiometer (MISR) a cikin tauraron dan adam na NASASatellite na duniya

Hanyoyin auna don gurɓataccen abu daban-daban

[gyara sashe | gyara masomin]

Kowane bangare daban-daban na gurɓataccen iska dole ne a auna shi ta hanyar tsari daban-daban, kayan aiki, ko halayen sunadarai. Hanyoyin nazarin sunadarai da akayi amfani dasu don auna gurɓata sun haɗa da gas chromatography; nau'o'i daban-daban na spectrometry, spectroscopy, da spectrophotometry; da kuma Hasken wuta photometry.

Kwayoyin cuta

[gyara sashe | gyara masomin]

Har zuwa ƙarshen karni na 20, yawan hayaki da aka samar da wani abu kamar hayaki sau da yawa ana auna shi da gani, kuma a hankali, ta hanyar riƙe katunan da layin da akayi musu mulki don nuna launuka daban-daban na launin toka. Wadannan an san su da sigogi na Ringelmann, bayan mai kirkirar su, Max Ringelmann. [26] An auna hayaki a kan sikelin maki shida.

An kirkiro sigogi na Ringelmann don auna hayaki daga bututun wuta da hayaki a ƙarshen karni na 19.

A cikin tashoshin sa ido na gurɓataccen yanayi na zamani, ana auna ƙwayoyin ƙwayoyin cuta (PM10) da ƙwayoyin (PM2.5) ta amfani da na'urar da ake kira microbalance (TEOM), bisa ga bututun gilashi wanda ke girgiza ko ƙasa yayin da ƙwayoyen da aka tattara suka tara a ciki. Hakanan za'a iya auna ƙwayoyin cuta ta amfani da wasu nau'ikan samfurin ƙwayoyin ƙwayoyin, gami da masu gano hoto na gani, waɗanda ke auna hasken da aka nuna daga samfurori na haske (babban ƙwayoyin suna nuna ƙarin haske) da kuma nazarin gravimetric (an tattara su akan matattara kuma an auna su). [27] Black carbon yawanci ana auna shi ta hanyar gani tare da kayan aikin Aethalometer.

Ƙananan ƙwayoyin (ƙananan PM0.1, don haka gabaɗaya ƙasa da 100 nanometers a diamita) suna da wuyar ganowa da auna tare da wasu daga cikin waɗannan dabarun. Yawanci, ana auna su (ko ƙidaya su) tare da ƙididdigar ƙwayoyin ƙwayoyin cuta, wanda ke faɗaɗa ƙwayoyin ta hanyar ƙwayoyin tururi a kansu don yin ɗigon ruwa mafi girma da sauƙin ganowa.[28]

Za'a iya auna abun dake cikin atomatik na samfurori tare da dabarun kamar X-ray spectrometry.[29]

Nitrogen dioxide

[gyara sashe | gyara masomin]

Ana iya auna Nitrogen dioxide (NO2) ta hanyar amfani da bututun watsawa, kodayake yana ɗaukar lokaci don tattara samfurori, bincika su, da kuma samar da sakamako.[30][31] Ana iya auna shi da hannu ko ta atomatik ta Hanyar Griess-Saltzman, kamar yadda aka ƙayyade a cikin ISO 6768:1998,[32] ko Hanyar Jacobs-Hocheiser.

Hakanan ana iya auna shi ta atomatik da sauri, ta hanyar analyzer na chemiluminescence, wanda ke ƙayyade matakan nitrogen oxide daga hasken da suke bayarwa. A cikin Burtaniya, alal misali, akwai shafuka sama da 200 inda ake cigaba da saka idanu kan NO2 ta hanyar chemiluminescence.[33]

Air pollution monitoring station in Reno, Nevada showing air inlets and sensor.
Tashoshin sa ido na iska suna samfurori da auna abubuwa masu gurɓata da yawa. Wannan tashar a Reno, Nevada, tana sa ido kan carbon monoxide, ozone, ƙwayoyin ƙwayoyin cuta masu kyau (PM2.5 da PM10), da nitrogen dioxide.

Sulphur dioxide da hydrogen sulphide

[gyara sashe | gyara masomin]

Sulphur dioxide () ana auna shi ta hanyar spectroscopy.  Wannan ya haɗa da kunna hasken ultraviolet a samfurin iska da auna hasken da aka samar.[34] Ana kuma amfani da ƙwayoyin ƙwayoyin cuta don auna .  Ana amfani da masu nazarin hoto na wuta don auna wasu mahaɗan sulfur a cikin iska.[35]

Carbon monoxide da carbon dioxide

[gyara sashe | gyara masomin]
Carbon dioxide da na'urori masu auna sigina na nitrogen dioxide a tashar jirgin kasa ta Birmingham New Street

Ana auna carbon monoxide () da carbon dioxide (CO2) ta hanyar ɗaukar haske mai haske (NDIR) bisa ga Dokar Beer-Lambert.[36] Hakanan ana iya auna CO ta amfani da na'urori masu auna sigina na electrochemical gel da masu ganowa na ƙarfe-oxide (MOS).[37]

Ana auna ozone (O3) ta hanyar ganin yawan haske da samfurin iska ke sha.[38] Mafi yawan ozone yana shan karin haske bisa ga dokar Beer-Lambert.

Magungunan kwayoyin halitta (VOCs)

[gyara sashe | gyara masomin]

Ana auna waɗannan ta amfani da gas chromatography da harshen wuta (GC-FID).

Hydrocarbons

[gyara sashe | gyara masomin]

Ana iya auna Hydrocarbons ta hanyar gas chromatography da masu gano wutar lantarki.[39] Wani lokaci ana bayyana su a matsayin ma'auni daban-daban na methane (CH4), NMHC (ba na methane hydrocarbons ba), da THC (dukkanin hydrocarbon) fitarwa (inda THC shine jimlar CH4 da NMHC fitarwa). [40]

Ana iya auna Ammoniya (NH3) ta hanyoyi daban-daban ciki har da chemiluminescence .

Ma'auni na halitta

[gyara sashe | gyara masomin]
Lichens irin su Lobaria pulmonaria suna da hankali ga gurɓataccen iska.

Hakanan za'a iya kimanta gurɓataccen iska ta hanyar lura da tasirin gurɓatacciyar iska akan tsire-tsire masu girma kamar lichens da mosses (misali na biomonitoring).[41][42][43] Wasu ayyukan kimiyya sunyi amfani da tsire-tsire masu girma na musamman kamar strawberries . [44]

Rukunin auna

[gyara sashe | gyara masomin]
  1. 1.0 1.1 "Monitoring Methodologies". Air Quality Wales. Welsh Government. Retrieved 29 March 2022.
  2. 2.0 2.1 Fan, Zih-Hua Tina (January 2011). "Passive Air Sampling: Advantages, Limitations, and Challenges". Epidemiology. 22 (1): S132. doi:10.1097/01.ede.0000392075.06031.d9. S2CID 75942106. Retrieved 27 March 2022.
  3. Cite error: Invalid <ref> tag; no text was provided for refs named brim
  4. Lewis, A; Lee, James; Edwards, Peter; Shaw, Marvin; Evans, Mat; et al. (2016). "Evaluating the performance of low cost chemical sensors for air pollution research". Faraday Discussions. 189: 85–103. Bibcode:2016FaDi..189...85L. doi:10.1039/C5FD00201J. PMID 27104223. Retrieved 28 March 2022.
  5. "Experimenting at Home With Air Quality Monitors". April 15, 2015. Retrieved May 29, 2015.
  6. "Technical Approaches for the Sensor Data on the AirNow Fire and Smoke Map". US Environmental Protection Agency. 12 May 2023. Retrieved 15 July 2023.
  7. "Welcome to the future—Models, maps, and Flow". Plume Labs. 27 June 2019. Archived from the original on 15 July 2023. Retrieved 15 July 2023.
  8. Jiao, Wan; Hagler, Gayle; et al. (2016). "Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States". Atmos Meas Tech. 9 (11): 5281–5292. doi:10.5194/amt-9-5281-2016. PMC 7425750. PMID 32802212.
  9. "Low–Cost Air Pollution Monitors and Indoor Air Quality". US Environmental Protection Agency. 2 May 2023. Retrieved 30 June 2023.
  10. Lewis, A; Lee, James; Edwards, Peter; Shaw, Marvin; Evans, Mat; et al. (2016). "Evaluating the performance of low cost chemical sensors for air pollution research". Faraday Discussions. 189: 85–103. Bibcode:2016FaDi..189...85L. doi:10.1039/C5FD00201J. PMID 27104223. Retrieved 28 March 2022.
  11. Austen, Kat (7 January 2015). "Environmental science: Pollution patrol". Nature. 517 (7533): 136–138. Bibcode:2015Natur.517..136A. doi:10.1038/517136a. PMID 25567265. S2CID 4446361.
  12. "Air Pollution Monitoring for Communities". 26 March 2015. Retrieved May 29, 2015.
  13. "Microsampling Air Pollution". June 3, 2013. Retrieved May 29, 2015.
  14. Hickman, A; Baker, C; Cai, X; Delgado-Saborit, J; Thornes, J (16 January 2018). "Evaluation of air quality at the Birmingham New Street Railway Station". Proc Inst Mech Eng F. 232 (6): 1864–1878. doi:10.1177/0954409717752180. PMC 6319510. PMID 30662169.
  15. "EcoClou AirSensor". Retrieved 28 March 2022.
  16. "How is pollution measured?". London Air. Imperial College, London. Retrieved 27 November 2021.
  17. "Automatic Urban and Rural Network (AURN)". UK Air. Defra. Retrieved 29 March 2022.
  18. "TTN AIRS AQS". Retrieved May 29, 2015.
  19. "The European Air Quality Index". European Environment Agency. European Union. Archived from the original on 29 March 2022. Retrieved 29 March 2022.
  20. Zarrar, Hassan; Dyo, Vladimir (August 2023). "Drive-by Air Pollution Sensing Systems: Challenges and Future Directions". IEEE Sensors Journal (in Turanci). doi:10.1109/JSEN.2023.3305779. ISSN 1530-437X. |hdl-access= requires |hdl= (help)
  21. Caminha, Cruz; Couto, Souza; Kosmalski, Maciel; Fladenmuller, Anna; Amorim, Dias (20 June 2018). "On the coverage of bus-based mobile sensing". Sensors (in Turanci). 18 (6). doi:10.3390/s18061976. ISSN 1424-8220. PMC 6022044.
  22. Richter, P (August 1994). "Air pollution monitoring with LIDAR". TrAC Trends in Analytical Chemistry. 13 (7): 263–266. doi:10.1016/0165-9936(94)87062-4. ISSN 0165-9936. Retrieved 28 March 2022.
  23. Abarca, Mónica. "qAIRa: Using drones to monitor air quality from illegal mining areas in Peru". UNICEF Office of Innovation. UNICEF. Retrieved 27 March 2022.
  24. "Ozone GOME". UK Air. Defra. Retrieved 28 March 2022.
  25. "Measurement of Air Pollution from Satellites (MAPS) - understanding the chemistry of the atmosphere". NASA. 19 September 1996. Archived from the original on 21 October 2020. Retrieved 9 July 2024.
  26. "Maximilien Ringelmann: Smoke Charts". Science History Institute. 2 August 2016. Retrieved 27 March 2022.
  27. "Particulate Matter in the United Kingdom Summary" (PDF). Air Quality Expert Group. Defra. 2005. Retrieved 27 March 2022.
  28. "Condensation particle counters". Center for Atmospheric Science. University of Manchester. Retrieved 29 June 2023.
  29. "X-ray spectrometry for particulate air pollution—a quantitative comparison of techniques". Anal Chem. 45 (12): 2002–9. 1973. doi:10.1021/ac60334a033. PMID 4762375.
  30. "Using Diffusion Tubes". Care4Air. Sheffield City Council. Retrieved 28 February 2022.
  31. "Diffusion Tubes". LoveCleanAir South London. 26 June 2014. Retrieved 28 February 2022.
  32. "ISO 6768:1998: Ambient air — Determination of mass concentration of nitrogen dioxide — Modified Griess-Saltzman method". International Organization for Standardization. Retrieved 30 June 2023.
  33. "Nitrogen Dioxide in the United Kingdom: Summary" (PDF). Air Quality Expert Group. Defra. p. 4. Retrieved 29 March 2022.
  34. "Sulfur dioxide" (PDF). Queensland Government. Archived from the original (PDF) on 23 October 2021. Retrieved 29 March 2022.
  35. Li, Kwong-Chi; Shooter, David (25 January 2007). "Analysis of sulfur-containing compounds in ambient air using solid-phase microextraction and gas chromatography with pulsed flame photometric detection". International Journal of Environmental Analytical Chemistry. 84 (10): 749–760. doi:10.1080/03067310410001729619. S2CID 93587574.
  36. Jha, Ravindra Kumar (23 November 2021). "Non-Dispersive Infrared Gas Sensing Technology: A Review". IEEE Sensors Journal. 22 (1): 6–15. doi:10.1109/JSEN.2021.3130034. S2CID 244564847 Check |s2cid= value (help). Retrieved 29 March 2022.
  37. Fine, George; Cavanagh, Leon; Afonja, Ayo; Binions, Russell (2010). "Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring". Sensors. 10 (6): 5469–5502. Bibcode:2010Senso..10.5469F. doi:10.3390/s100605469. PMC 3247717. PMID 22219672.
  38. "How We Measure Ozone". National Park Service. US Department of the Interior. Retrieved 30 March 2022.
  39. Morris, Robert; Chapman, Robert (1961). "Flame lonization Hydrocarbon Analyzer". Journal of the Air Pollution Control Association. 11 (10): 467–489. doi:10.1080/00022470.1961.10468025.
  40. Cite error: Invalid <ref> tag; no text was provided for refs named alberta
  41. Conti, M; Cecchetti, G (2001). "Biological monitoring: lichens as bioindicators of air pollution assessment - a review". Environ Pollut. 114 (3): 471–92. doi:10.1016/s0269-7491(00)00224-4. PMID 11584645. Retrieved 30 March 2022.
  42. "Impacts of air pollution on Lichens and Bryophytes (mosses and liverworts)". Air Pollution Information System. Centre for Ecology and Hydrology. Retrieved 30 March 2022.
  43. Ndlovu, Ntombizikhona Beaulah (10 July 2015). "Mosses and lichens come to the rescue in battle against air pollution". The Conversation. Retrieved 27 March 2022.
  44. "StrawbAIRies". University of Antwerp. Archived from the original on 10 April 2022. Retrieved 27 March 2022.

Adadin gurɓataccen abu dake cikin iska yawanci ana nuna shi azaman maida hankali, wanda aka auna a ko dai sassa-da-bayani (yawanci sassa da biliyan, ppb, ko sassa da miliyan, ppm, wanda akafi sani da rabo na haɗuwa), ko micrograms da mita cubic (μg / m3). Yana da sauƙi a canza ɗaya daga cikin waɗannan raka'a zuwa ɗayan, tare da la'akari da Nauyin kwayoyin daban-daban na iskar gas da yanayin zafi da matsin lamba.[1]

Wadannan raka'a suna nuna yawan gurɓataccen iska dangane da taro ko ƙarar gurɓata, kuma ana amfani dasu don auna gurɓatawar gas, kamar nitrogen dioxide, da ƙarancin (PM10) da ƙwayoyin ƙwayoyin (PM2.5). Wani ma'auni na madadin don barbashi, lambar barbashi, yana nuna maida hankali dangane da yawan barbashi a kowane girman iska a maimakon haka, wanda zai iya zama hanya mafi mahimmanci don kimanta cututtukan kiwon lafiya na barbashi masu guba (PM0.1, ƙasa da 0.1 μm a diamita).[2] Za'a iya auna lambar ƙwayoyin tare da kayan aiki kamar ƙididdigar ƙwayoyin ƙwayoyin.[3]

Ana lissafin ƙimar ingancin iska na birane (AQI) ta hanyar haɗawa ko kwatanta maida hankali ga "kwandon" na gurɓataccen iska na yau da kullun (yawanci ozone, carbon monoxide, sulphur dioxide, nitrogen oxides, da duka ƙwayoyin ƙwayoyin cuta da ƙwayoyin) don samar da lamba ɗaya a kan sikelin da ke da sauƙin fahimta (kuma sau da yawa launi).[4]

An fara auna gurɓataccen iska, a Burtaniya, a karni na 19. A shekara ta 1852, masanin kimiyyar Scotland Robert Angus Smith ya gano (kuma ya sanya masa suna) Ruwan sama mai zafi bayan ya tattara samfurori na ruwan sama wanda ya zama yana dauke da adadi mai yawa na sulphur daga konewar kwal. Dangane da jerin lokuta na gurɓataccen iska da David Fowler da abokan aiki suka yi, Smith shine "masanin kimiyya na farko da yayi ƙoƙari yayi bincike mai yawa, bincike mai yawa game da yanayin sinadarai na gurɓatar yanayi".[5]

A farkon karni na 20, likitan Irish da injiniyan muhalli John Switzer Owens da Kwamitin Binciken Rashin Yanayi, wanda shine sakatare, sun cigaba sosai da auna da saka idanu kan gurɓataccen iska ta amfani da cibiyar sadarwa ta ma'aunin ajiya. Owens ya kuma kirkiro sabbin hanyoyin auna gurɓataccen yanayi.

A watan Disamba na shekara ta 1952, Babban Smog na London ya haifar da mutuwar mutane 12,000.[6] Wannan taron, da makamantansu kamar bala'in smog na Donora na 1948 a Amurka, ya zama daya daga cikin manyan abubuwan da suka faru a tarihin muhalli saboda sun haifar da sake tunani game da kula da gurɓataccen yanayi. A cikin Burtaniya, Babban Smog na London ya kai tsaye ga Dokar Tsabtace Iska, wanda zai iya haifar da sakamako harma da yakai nesa fiye da yadda aka nufa.[7] Abubuwan bala'i kamar wannan sun haifar da auna gurɓataccen yanayi kuma ana sarrafa shi sosai.[5]

Haɗin waje

[gyara sashe | gyara masomin]
  1. "Unit Conversion". Air Pollution Information System (APIS). UK Centre for Ecology & Hydrology. Retrieved 27 January 2023.
  2. Ohlwein, Simone; Kappeler, Ron; Kutlar Joss, Meltem; Künzli, Nino; Hoffmann, Barbara (21 February 2019). "Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence". International Journal of Public Health. 64 (4): 547–559. doi:10.1007/s00038-019-01202-7. eISSN 1661-8564. ISSN 1661-8556. PMID 30790006. S2CID 67791011.
  3. "Condensation particle counters". Center for Atmospheric Science. University of Manchester. Retrieved 29 June 2023.
  4. "Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI): EPA 454/B-18-007" (PDF). US Environmental Protection Agency: Office of Air Quality Planning and Standards. Archived from the original (PDF) on 10 September 2021. Retrieved 26 January 2023.
  5. 5.0 5.1 Fowler, David; Brimblecombe, Peter; Burrows, John; Heal, Mathew; Grennfelt, Peringe; et al. (30 October 2020). "A chronology of global air quality". Phil. Trans. R. Soc. A. 378 (2183). Bibcode:2020RSPTA.37890314F. doi:10.1098/rsta.2019.0314. PMC 7536029. PMID 32981430.
  6. Bell, M.L.; Davis, D.L.; Fletcher, T. (2004). "A Retrospective Assessment of Mortality from the London Smog Episode of 1952: The Role of Influenza and Pollution". Environ Health Perspect. 112 (1, January): 6–8. doi:10.1289/ehp.6539. PMC 1241789. PMID 14698923.
  7. Brimblecombe, Peter (2006-11-01). "The Clean Air Act after 50 years". Weather (in Turanci). 61 (11): 311–314. Bibcode:2006Wthr...61..311B. doi:10.1256/wea.127.06. ISSN 1477-8696. S2CID 123552841.