Duniyar terrestrial stilling

Daga Wikipedia, Insakulofidiya ta kyauta.
Duniyar terrestrial stilling

Tsayar da ƙasa a duniya shine raguwar saurin iska da aka gani kusa da saman duniya (~ tsayin mita 10) a cikin shekaru talatin da suka gabata (musamman tun shekarun 1980), wanda asalinsa ake kira "tsitsi". [1] Wannan raguwar iskar ƙasa da ke kusa da ƙasa ta fi shafar yankunan tsakiyar latitude na duka sassan duniya, tare da raguwar matsakaicin duniya na -0.140 ms -1 dec -1 (mitoci a sakan daya a kowace shekara goma) ko tsakanin 5 da 15% a cikin shekaru 50 da suka gabata. [2] Tare da babban-latitude (> 75° daga ma'auni) yana nuna haɓaka a cikin duka hemispheres. Sabanin yadda iskoki ke yin rauni a saman nahiyoyin duniya, iskoki sun yi ƙoƙarin yin ƙarfi a kan yankunan teku . [3] [4] A cikin 'yan shekarun da suka gabata, an gano raguwa a cikin wannan raguwar saurin iska wanda ke nuna farfadowa a ma'aunin duniya tun daga 2013. [5]

Haƙiƙanin dalilin (s) na wanzuwar ƙasa a duniya ba shi da tabbas kuma an danganta shi da manyan direbobi guda biyu: (i) canje-canje a cikin yanayin yanayin yanayi mai girma, da (ii) haɓakar yanayin ƙasa saboda girma daji, amfani da ƙasa. canje-canje, da ƙauyuka .

Bayar da canjin yanayi, canje-canje a cikin saurin iska a halin yanzu yana da yiwuwar damuwa ga jama'a, saboda tasirin da hydrology , da hydrologicals, da iska mai ƙarfi, ko ingancin iska, ko ingancin iska da lafiyar dan Adam, da dai sauransu.

Dalilai[gyara sashe | gyara masomin]

Asalin wannan rauni na saurin iskar kusa da saman ƙasa ba cikakke ba ne, mai yiwuwa saboda dalilai da yawa waɗanda ke hulɗa a lokaci ɗaya, kuma suna iya canzawa a sararin samaniya cikin lokaci. Masana kimiyya sun yi nuni da manyan dalilai daban-daban da ke tasiri wannan raguwar saurin iska:

(i) Haɓaka rashin ƙarfi na ƙasa (misali girma gandun daji, sauye-sauyen amfani da ƙasa da ƙauyuka) kusa da tashar yanayin yanayi inda kayan aikin anemometer ke kaiwa ga ƙarfin juzu'i wanda ke raunana ƙananan iska. [6] [7] [8]

(ii) Bambance-bambancen yanayi mai girma, wanda ke da alaƙa da fadada poleward na tantanin halitta Hadley [9] da kuma sauyawar cibiyoyin ayyuka (watau anticyclones da cyclones ) suna sarrafa canje-canje a cikin saurin iska na kusa. [10] [11] [12]

(iii) Canje-canjen yadda ake auna saurin iskar, gami da tabarbarewar kayan aiki na na'urorin anemometer; inganta fasaha na anemometers; tsayin anemometer; [13] canzawa a wuraren ma'auni; canje-canje a cikin yanayi a kusa da tashar sa ido; al'amurran daidaitawa ; da kuma auna tazarar lokaci. [14]

(iv) The " duniya dimming ", watau, raguwa a cikin adadin hasken rana radiation isa zuwa doron kasa saboda ƙara aerosol da kuma greenhouse gas taro, tilasta a tabbatar da yanayi haifar da rauni iska. [15]

(v) Wasu dalilai, kamar haɓaka yanayin damshin ƙasa da ake samu [16] da sauye-sauye na sararin samaniya [17] an gabatar da su gaba.

Duk da haka, har yanzu ba a warware ainihin abubuwan da ke haifar da dawwama a duniya ba saboda yawancin rashin tabbas da ke tattare da wannan lamari a fadin duniya.

Rashin tabbas[gyara sashe | gyara masomin]

"Tsarin duniya" ba ya yin tasiri kamar yadda dukan sararin duniya ke fadin ƙasa da saman teku. A sararin samaniya, an ba da rahoton karuwar saurin iska ga wasu yankuna, musamman ga manyan latitudes, [18] bakin teku [19] da kuma saman teku inda marubuta daban-daban [3] [20] [4] suka tabbatar da karuwar yanayin duniya. gudun iska ta amfani da ma'aunin tauraron dan adam a cikin shekaru 30-40 da suka gabata. Binciken da aka yi kwanan nan ya nuna raguwa a cikin mummunan hali na saurin iskar ƙasa, tare da farfadowa da yawa na kwanan nan / ƙarfafa saurin iska tun a kusa da 2013. [21] [5] Wannan yana haifar da rashin tabbas a fahimtar lamarin.

Yawancin rashin tabbas da ke bayan muhawarar "ƙaddarar duniya" tana zaune a cikin (i) gajeriyar isar da bayanan saurin iskar, tare da jerin farawa a cikin 1960s, (ii) nazarin saurin iskar da aka fi aiwatar da shi akan yankuna na tsakiya inda yawancin ma'auni na dogon lokaci. akwai; [2] da (iii) ƙarancin ingancin rikodin anemometer kamar yadda rahoton kimantawa na biyar (AR5) ya nuna na Ƙungiyar gwamnatoci kan Canjin Yanayi (IPCC).

Karancin inganci a cikin jerin saurin iska ya samo asali ne saboda abubuwan da ba na yanayi ba (misali lura da sauye-sauyen aiki, ƙaura tasha, canjin tsayin anemometer) yana shafar waɗannan bayanan, wanda ke haifar da zama mara wakilci na ainihin bambance-bambancen saurin iska na tsawon lokaci. An haɓaka ƙayyadaddun ƙa'idodin homogenization don jerin saurin iska don ganowa da daidaita yuwuwar inhomogeneities. [11]

Bincike mai gudana[gyara sashe | gyara masomin]

Binciken da ake yi a halin yanzu game da tantancewa da kuma danganta wannan lamarin ya mayar da hankali kan rage ƙayyadaddun samuwa da ƙarancin ingancin bayanan saurin iska. Aikin binciken da Turai ta tallafa wa STILLING wani shiri ne na yanzu (2016-2018) wanda ke da nufin rage wannan takurawa ta hanyar ceto, daidaitawa da dawo da mafi tsayi kuma mafi inganci jerin saurin iska a duk faɗin duniya. A halin yanzu aikin yana tattara bayanan saurin iska wanda ya fara a cikin 1880 yana ba masana kimiyya kusan bayanan shekaru 130, kusan shekaru 80 fiye da karatun baya da ake samu a cikin adabin kimiyya. Ingantacciyar masaniyar yanayin saurin iskar da ta gabata yana da mahimmanci don fahimtar abin da ke faruwa a halin yanzu na "zamantakewar duniya", gano idan sauyin yanayi ya biyo bayan wannan guguwar iska ko kuma irin wannan yanayin da ya faru a baya kuma ana iya sa ran nan gaba. Wato tare da dogon rikodin za a iya gano zagayowar decadal.

Abubuwan canjin saurin iska[gyara sashe | gyara masomin]

Al'amarin "kwarjinin duniya" yana da babban sha'awar kimiyya, tattalin arziki, da muhalli saboda mahimmin tasirin ko da ƙananan saurin iskar da ke sauye-sauye a yanayin yanayi da yanayin teku da sauran fannonin da ke da alaƙa kamar: (i) makamashin iska mai sabuntawa; [22] (ii) noma da ilimin ruwa saboda ƙawance; [23] (iii) ƙaura na nau'in tsire-tsire masu watsar da iska; [24] (iv) bala'o'in da suka shafi iska; [21] (v) Tasirin ruwa da bakin teku saboda guguwar da iska ke haifarwa da raƙuman ruwa; [25] (vi) watsar da gurɓataccen iska; [26] a tsakanin sauran fannonin tattalin arziki da muhalli da yawa. Duk da haka, don makamashin iska kusa da saman sararin sama ana lura da saurin iska a cikin 10m na filin ƙasa, kuma tare da injin turbin da aka samo wasu 60-80. m sama da ƙasa ana buƙatar ƙarin karatu a nan. Ana kuma buƙatar ƙarin karatu a wurare masu tsayi, waɗanda galibi yankuna ne waɗanda ke samar da yawancin kayan ruwan mu, da ake kira hasumiya na ruwa, [27] [28] kamar yadda saurin iska ya nuna yana raguwa da sauri fiye da canje-canjen da aka rubuta a. ƙananan wuraren tsaunuka, [29] kuma akwai takardun Sinanci da yawa da ke nuna wannan ga Tibet Plateau. [30]

Nassoshi[gyara sashe | gyara masomin]

  1. Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(17): L17403. doi:10.1029/2007GL031166
  2. 2.0 2.1 McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol 416–417: 182–205. doi:10.1016/j.jhydrol.2011.10.024 Cite error: Invalid <ref> tag; name "McVicar et al." defined multiple times with different content
  3. 3.0 3.1 Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317(5835): 233–235. doi:10.1126/science.1140746 Cite error: Invalid <ref> tag; name "Wentz et al." defined multiple times with different content
  4. 4.0 4.1 Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332(6028): 451–455. doi:10.1126/science.1197219. Cite error: Invalid <ref> tag; name "Young et al." defined multiple times with different content
  5. 5.0 5.1 Dunn RJH, Azorin-Molina C, Mears CA, Berrisford P, McVicar TR (2016) Surface winds. In State of the Climate 2015, Bull Amer Meteor Soc 97 (8): S38-S40.
  6. Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11): 756–761. doi:10.1038/ngeo979
  7. Bichet A, Wild M, Folini D, Schär C (2012) Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys Res Lett 39(11): L11701. doi:10.1029/2012GL051685
  8. Wever N (2012) Quantifying trends in surface roughness and the effect on surface wind speed observations. J Geophys Res – Atmos 117(D11): D11104. doi:10.1029/2011JD017118.
  9. Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.
  10. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warning. Geophys Res Lett 34(6): L06805. doi:10.1029/2006GL028443.
  11. 11.0 11.1 Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Jerez S, Sanchez-Lorenzo A, López-Moreno JI, Revuelto J, Trigo RM, Lopez-Bustins JA, Espirito-Santo F (2014) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Climate 27 (10): 3692–3712. doi:10.1175/JCLI-D-13-00652.1 Cite error: Invalid <ref> tag; name "Azorin-Molina et al." defined multiple times with different content
  12. Azorin-Molina C, Guijarro JA, McVicar TR, Vicente-Serrano SM, Chen D, Jerez S, Espirito-Santo F (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res – Atmos 121(3): 1059–1078. doi:10.1002/2015JD024485
  13. Wan, H., L. W. Xiaolan, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209–1225, doi:10.1175/2009JCLI3200.1.
  14. Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Revuelto J, Jerez S, Lopez-Moreno JI (2017) Assessing the impact of measuring time interval when calculating wind speed means and trends under the stilling phenomenon. Int J Climatol 37(1): 480–492. doi:10.1002/joc.4720
  15. Xu M, Chang CP, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res-Atmos 111: D24111. doi:10.1029/2006JD007337
  16. Shuttleworth WJ, Serrat-Capdevilla A, Roderick ML, Scott RL (2009) On the theory relating changes in area-average and pan evaporation. Q J R Meteorol Soc 135(642): 1230–1247. doi:10.1002/qj.434.
  17. Mazzarella A (2007) The 60-year solar modulation of global air temperature: the Earth́'s rotation and atmospheric circulation connection. Theor Appl Climatol 88(3–4): 193–199. doi:10.1007/s00704-005-0219-z.
  18. Minola L, Azorin-Molina C, Chen D (2016) Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J Climate 29(20): 7397–7415. doi:10.1175/JCLI-D-15-0636.1
  19. Pinard JP (2007) Wind climate of the Whitehorse area. Artic 60(3): 227–237. doi:10.14430/arctic215
  20. Tokinaga H, Xie SP (2011) Wave- and Anemometer-based Sea-surface Wind (WASWind) for Climate Change Analysis. J Climate 24(1): 267–285. doi:10.1175/2010JCLI3789.1
  21. 21.0 21.1 Kim J, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn 45(5): 1699–1712. doi:10.1007/s00382-015-2546-9 Cite error: Invalid <ref> tag; name "Kim & Paik" defined multiple times with different content
  22. Otero C, Manchado C, Arias R, Bruschi VM, Gómez-Jáuregui V, Cendrero A (2012), Wind energy development in Cantabria, Spain. Methodological approach, environmental, technological and social issues, Renewable Energy, 40(1), 137–149, doi:10.1016/j.renene.2011.09.008
  23. McVicar TR, Roderick ML, Donohue RJ, Van Niel TG (2012), Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds, Ecohydrol., 5(4), 381–388, doi:10.1002/eco.1298
  24. Thompson, S.E., and G.G. Katul (2013), Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species, Glob. Chang. Biol., 19(6):1720–35, doi:10.1111/gcb.12173.
  25. Cid A., M. Menendez, S. Castanedo, A.J. Abascal, F.J. Méndez, and R. Medina (2016), Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe, Clim. Dyn., 46(5), 1503–1516, doi:10.1007/s00382-015-2659-1
  26. Cuevas, E., Y. Gonzalez, S. Rodriguez, J.C. Guerra, A.J. Gomez-Pelaez, S. Alonso-Perez, J. Bustos, and C. Milford (2013), Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere, Atmos. Chem. Phys., 13(4), 1973–1998, doi:10.5194/acp-13-1973-2013.
  27. Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, Lopez-Moreno JI, Lorentz S, Schadler B, Schreier H, Schwaiger K, Vuille M, Woods R. 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences 15(2): 471–504. doi:10.5194/hess-15-471-2011.
  28. Viviroli D, Durr HH, Messerli B, Meybeck M, Weingartner R. 2007. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research 43(7):W07447. doi:10.1029/2006WR005653.
  29. McVicar TR, Van Niel TG, Roderick ML, Li LT, Mo XG, Zimmermann NE, Schmatz DR (2010). Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys Res Lett 37 (6): L06402. doi:10.1029/2009GL042255
  30. You, Q., Fraedrich, K., Min, J., Kang, S., Zhu, X., Pepin, N., Zhang, L. (2014) Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. International Journal of Climatology 34(6), 1873–1882. doi:10.1002/joc.3807