Jump to content

PH na ƙasa

Daga Wikipedia, Insakulofidiya ta kyauta.

Samfuri:Quote frame

Bambancin duniya a cikin pH na ƙasa. Red = ƙasa mai ƙamshi. Yellow = ƙasa mai tsaka-tsaki. Blue = ƙasa mai laushi. Black = babu bayanai.

pH na ƙasa shine ma'auni na acidity ko basicity (alkalinity) na ƙasa. pH na ƙasa babban halayyar da za a iya amfani da ita don yin bincike mai zurfi game da halaye na ƙasa.[1] An bayyana pH a matsayin logarithm mara kyau (tushen 10) na aiki ions na hydronium (H + ko, mafi mahimmanci, H3O + aq) a cikin mafita.  A cikin ƙasa, ana auna shi a cikin ƙasa mai laushi da aka gauraya da ruwa (ko maganin gishiri, kamar 0.01 CaCl2), kuma yawanci yakan faɗi tsakanin 3 da 10, tare da 7 kasancewa tsaka tsaki.  Ƙasa mai ƙwayoyin cuta tana da pH ƙasa da 7 kuma ƙasa mai ƙwayoyi tana da pH sama da 7. Ƙasa mai ƙarancin ƙwayoyin cuta (pH < 3.5) da ƙasa mai ƙaranci sosai (pH > 9) suna da wuya.[2][3]

Ana ɗaukar pH na ƙasa a matsayin babban canji a cikin ƙasa saboda yana shafar matakai da yawa na sunadarai. Yana shafar wadatar kayan abinci na shuke-shuke ta hanyar sarrafa nau'ikan sinadarai na abubuwan gina jiki daban-daban da kuma rinjayar halayen sinadarai da suke fuskanta. Mafi kyawun pH kewayon ga yawancin tsire-tsire yana tsakanin 5.5 da 7.5; [3] duk da haka, tsire-shuke da yawa sun saba da bunƙasa a ƙimar pH a waje da wannan kewayon. 

Rarrabawar pH na ƙasa[gyara sashe | gyara masomin]

Ma'aikatar Aikin Gona ta Amurka ta Rarraba Ayyukan Ruwa na Halitta ta rarraba matakan pH na ƙasa kamar haka: [4]

Sunan da ake kira Yanayin pH
Ultra acidic < 3.5
Yana da ƙwayoyin cuta sosai 3.5–4.4
Yana da karfi sosai 4.5–5.0
Yana da ƙwayoyin cuta sosai 5.1–5.5
Matsakaicin acid 5.6–6.0
Kadan acidic 6.1–6.5
Ba tare da la'akari ba 6.6–7.3
Ƙananan alkaline 7.4–7.8
Matsakaicin alkaline 7.9–8.4
Alkali mai ƙarfi 8.5–9.0
Alkali mai karfi sosai > 9.0

0 zuwa 6 = acidic,7 = tsaka-tsaki da 8 da sama da alkalinity

Tabbatar da pH[gyara sashe | gyara masomin]

Hanyoyin tantance pH sun haɗa da:

  • Binciken bayanan ƙasa: wasu halaye na bayanin martaba na iya zama alamun ko dai acid, saline, ko yanayin sodic. Misalan sune:
    • Rashin haɗuwa da Layer na kwayoyin halitta tare da Layer ɗin ma'adinai na ƙasa - wannan na iya nuna ƙasa mai ƙarfi;
    • Tsarin sararin samaniya na gargajiya, tunda podzol suna da karfi sosai: a cikin waɗannan ƙasa, sararin samaniya mai laushi (E) yana ƙarƙashin layin halitta kuma yana rufe sararin samaniya B mai duhu.
    • Kasancewar Layer na Caliche yana nuna kasancewar carbonates na calcium, waɗanda ke cikin yanayin alkaline;
    • tsari ginshiƙai na iya zama alamar yanayin sodic.
  • Binciken manyan tsire-tsire. Tsire-tsire na Calcifuge (waɗanda suka fi son ƙasa mai ƙamshi) sun haɗa da Erica, Rhododendron da kusan dukkanin nau'in Ericaceae, birch da yawa (Betula), foxglove (Digitalis), gorse (Ulex spp.), da Scots Pine (Pinus sylvestris). Tsire-tsire na Calcicole (mai son laka) sun haɗa da itatuwan ash (Fraxinus spp.), honeysuckle (Lonicera), Buddleja, dogwoods (Cornus spp), lilac (Syringa) da nau'in Clematis.
  • Amfani da kayan gwajin pH mai arha, inda a cikin karamin samfurin ƙasa an gauraye shi da maganin mai nuna alama wanda ke canza launi bisa ga acidity.
  • Amfani da takarda na litmus. An haɗa ƙaramin samfurin ƙasa tare da ruwa mai narkewa, wanda aka saka takarda na litmus. Idan ƙasa tana da acidic takarda ta zama ja, idan asali, shuɗi.
  • Wasu 'ya'yan itace da kayan lambu suma suna canza launi don amsawa ga canjin pH. Ruwan Blueberry ya zama ja idan an kara acid, kuma ya zama indigo idan an ba shi isasshen tushe don samar da pH mai girma. Hakanan ana shafar jan kabewa.
  • Amfani da Mita na pH na lantarki wanda ake samu a kasuwanci, wanda aka saka gilashi ko ƙarfin lantarki a cikin ƙasa mai laushi ko cakuda (suspension) na ƙasa da ruwa; yawanci ana karanta pH akan allon nuni na dijital.[5]
  • A cikin shekarun 2010, an haɓaka hanyoyin spectrophotometric don auna pH na ƙasa wanda ya haɗa da ƙara mai nuna alamar zuwa ga abin da aka cire.[6] Wadannan suna kwatanta da ma'aunin Gilashin lantarki amma suna ba da fa'idodi masu yawa kamar rashin drift, haɗin ruwa da tasirin dakatarwa.

Ana buƙatar daidaitattun matakan pH na ƙasa don bincike da saka idanu na kimiyya. Wannan gabaɗaya yana ƙunshe da nazarin dakin gwaje-gwaje ta amfani da daidaitattun ladabi; misali na irin wannan yarjejeniya shine a cikin USDA Soil Survey Field and Laboratory Methods Manual. A cikin wannan takardar yarjejeniyar shafi uku don auna pH na ƙasa ta haɗa da sassan da ke biyowa: Aikace-aikacen; Takaitaccen Hanyar; Tsakanin; Tsaro; Kayan aiki; Reagents; da Hanyar.

Abubuwan da ke shafar pH na ƙasa[gyara sashe | gyara masomin]

pH na ƙasa ta halitta ya dogara da ma'adanai na kayan iyaye na ƙasa, da kuma halayen yanayi da wannan kayan iyaye suka fuskanta. A cikin yanayi mai dumi, mai laushi, ƙarancin ƙasa yana faruwa a tsawon lokaci yayin da kayan yanayi ke fitowa ta hanyar ruwa da ke motsawa a gefe ko ƙasa ta cikin ƙasa. A cikin yanayin zafi, duk da haka, yanayin ƙasa da leaching ba su da ƙarfi kuma pH na ƙasa sau da yawa tsaka-tsaki ne ko alkaline.[7][8]

Tushen acidity[gyara sashe | gyara masomin]

Matakai da yawa suna ba da gudummawa ga ƙarancin ƙasa. Wadannan sun hada da: [9]

Tushen alkalinity[gyara sashe | gyara masomin]

Jimlar alkalinity na ƙasa yana ƙaruwa tare da: [10][11]

  • Yanayin yanayi na silicate, aluminosilicate da ma'adanai na carbonate da ke dauke da Na+, Ca2+, Mg2+ da K+;
  • Ƙara ma'adanai na silicate, aluminosilicate da carbonate zuwa ƙasa; wannan na iya faruwa ta hanyar zubar da kayan da iska ko ruwa suka rushe a wasu wurare, ko ta hanyar haɗakar ƙasa tare da kayan da ba su da yanayi (kamar ƙara dutse zuwa ƙasa mai acid);
  • Ƙara ruwa wanda ke dauke da bicarbonates da aka narke (kamar yadda yake faruwa yayin ban ruwa tare da ruwan bicarbonate mai yawa).

Tattara alkalinity a cikin ƙasa (kamar carbonates da bicarbonates na Na, K, Ca da Mg) yana faruwa ne lokacin da babu isasshen ruwa da ke gudana a cikin ƙasa don leach gishiri mai narkewa. Wannan na iya zama saboda yanayin busasshiyar ƙasa, ko Rashin ruwa na ciki; a cikin waɗannan yanayi yawancin ruwan da ke shiga ƙasa yana narkewa (tsire-tsire sun ɗauka) ko kuma yana narke, maimakon gudana ta cikin ƙasa.[10]

pH na ƙasa yawanci yana ƙaruwa lokacin da jimlar alkalinity ta ƙaru, amma ma'auni na cations da aka kara yana da tasiri a kan pH na ƙasa. Misali, kara yawan sodium a cikin ƙasa mai alkaline yana haifar da rushewar calcium carbonate, wanda ke kara pH. Ƙasa mai laushi na iya bambanta a pH daga 7.0 zuwa 9.5, dangane da matakin da Ca2+ ko Na+ suka mamaye cations masu narkewa.[10]

Tasirin pH na ƙasa akan ci gaban shuka[gyara sashe | gyara masomin]

Ƙasa mai ƙamshi[gyara sashe | gyara masomin]

Babban matakan aluminum yana faruwa a kusa da wuraren hakar ma'adinai; ana fitar da ƙananan aluminum zuwa muhalli a tashoshin wutar lantarki ko incinerators.[12] Aluminium a cikin iska ana wanke shi da ruwan sama ko kuma yawanci ya zauna amma ƙananan barbashi na aluminum sun kasance a cikin iska na dogon lokaci.[12]

Ruwan ruwa na acid shine babban abin halitta don tattara aluminum daga tushen halitta [13] babban dalilin tasirin muhalli na aluminum; [14] duk da haka, babban abin da ke haifar da kasancewar aluminum a cikin gishiri da ruwa mai laushi shine matakai na masana'antu wanda kuma ya saki aluminum cikin iska. Shuke-shuke da ke girma a cikin ƙasa mai ƙamshi na iya fuskantar damuwa iri-iri ciki har da Aluminium (Al), Hydrogen (H), da / ko Manganese (Mn) guba, da kuma karancin abinci mai gina jiki na calcium (Ca) da Magnesium (Mg).      

Rashin guba na aluminum shine mafi yawan matsala a cikin ƙasa mai ƙamshi. Aluminium yana cikin dukkan ƙasa zuwa digiri daban-daban, amma narkewar Al3+ yana da guba ga shuke-shuke; Al3+ ya fi narkewa a low pH; sama da pH 5.0, akwai ƙaramin Al a cikin tsari mai narkewa.[15][16]  Aluminium ba abinci ne na shuka ba, kuma saboda haka, shuke-shuke ba sa ɗaukar shi sosai, amma yana shiga tushen shuke-huke ta hanyar osmosis. Aluminium na iya kasancewa a cikin nau'o'i daban-daban kuma yana da alhakin iyakance ci gaba a sassa daban-daban na duniya. An gudanar da nazarin haƙuri na aluminum a cikin nau'ikan shuke-shuke daban-daban don ganin ƙofofi masu inganci da maida hankali da aka fallasa tare da aiki a kan fallasawa.[17] Aluminium yana hana ci gaban tushen; tushen gefe da shawarwarin tushen sun zama masu kauri kuma tushen ba su da rassa mai kyau; shawarwarin tushen na iya zama launin ruwan kasa. A cikin tushen, tasirin farko na Al3 + shine hana fadada sel na Rhizodermis, wanda ke haifar da fashewar su; daga baya an san shi da tsoma baki tare da matakai da yawa na ilimin lissafi ciki har da ɗaukar da jigilar calcium da sauran abubuwan gina jiki masu mahimmanci, rarraba sel, samar da bango na tantanin halitta, da aikin enzyme.[15][18]

Matsalar Proton (H + ion) na iya iyakance ci gaban shuka. Fump din proton, H +-ATPase, na plasmalemma na ƙwayoyin tushen yana aiki don kula da pH na kusa da cytoplasm. Babban aikin proton (pH a cikin kewayon 3.0-4.0 ga mafi yawan nau'ikan shuke-shuke) a cikin matsakaicin girma na waje ya shawo kan ikon tantanin halitta don kula da pH na cytoplasmic kuma girma ya rufe.[19]

A cikin ƙasa tare da babban abun ciki na ma'adanai masu dauke da Manganese, guba na Mn na iya zama matsala a pH 5.6 da ƙasa. Manganese, kamar aluminum, yana ƙara narkewa yayin da pH ke sauka, kuma ana iya ganin alamun guba na Mn a matakan pH ƙasa da 5.6. Manganese muhimmin abu ne mai gina jiki, don haka tsire-tsire suna jigilar Mn cikin ganye. Alamomin gargajiya na guba na Mn sune ƙuƙwalwa ko ƙuƙwalwar ganye.[20]

Samun abinci mai gina jiki dangane da pH na ƙasa[gyara sashe | gyara masomin]

Samun abinci mai gina jiki dangane da pH na ƙasa

pH na ƙasa yana shafar wadatar wasu abubuwan gina jiki na shuke-shuke:

Kamar yadda aka tattauna a sama, guba ta aluminum tana da tasiri kai tsaye akan ci gaban shuka; duk da haka, ta hanyar iyakance ci gaban tushen, yana kuma rage wadatar abubuwan gina jiki na shuka. Saboda tushen ya lalace, an rage sinadarin abinci mai gina jiki, kuma ana samun rashi na macronutrients (nitrogen, phosphorus, potassium, calcium da magnesium) akai-akai a cikin ƙasa mai karfi zuwa mai tsananin acid (pH<5.0). [21] Lokacin da matakan aluminum suka karu a cikin ƙasa, yana rage matakan pH. Wannan ba ya ba da izinin bishiyoyi su ɗauki ruwa, ma'ana ba za su iya photosynthesis ba, wanda ke haifar da su mutuwa. Itacen na iya samar da launin rawaya a kan ganye da jijiyoyin su.[22]

Ana ƙara wadatar Molybdenum a pH mafi girma; wannan saboda ion na molybdate ya fi karfi da ƙwayoyin yumɓu a ƙananan pH.[23]

Zinc, baƙin ƙarfe, jan ƙarfe da Manganese suna nuna raguwar samuwa a pH mafi girma (ƙaruwar sorption a pH mafi kyau). [23]

Tasirin pH akan wadatar phosphorus ya bambanta sosai, dangane da yanayin ƙasa da amfanin gona da ake tambaya. Ra'ayi mai yawa a cikin 1940s da 1950s shine cewa an kara yawan P a kusa da tsaka-tsaki (pH na ƙasa 6.5-7.5), kuma ya ragu a pH mafi girma da ƙasa. Ma'amala da phosphorus tare da pH a cikin matsakaici zuwa dan kadan acidic range (pH 5.5-6.5) duk da haka, sun fi rikitarwa fiye da yadda wannan ra'ayi ya ba da shawarar. Gwaje-gwaje na dakin gwaje-gwajen, gwaje-gaje na gilashi da gwaje-gwagwarmayar filin sun nuna cewa karuwar pH a cikin wannan kewayon na iya ƙaruwa, raguwa, ko kuma ba su da tasiri ga kasancewar P ga tsire-tsire.[24][25]

Samun ruwa dangane da pH na ƙasa[gyara sashe | gyara masomin]

Ƙasa mai ƙarfi mai ƙamshi ne sodic da warwatsewa, tare da jinkirin shiga, ƙarancin hydraulic conductivity da ƙarancin ruwa. Girman shuke-shuke yana da ƙuntata sosai saboda iska ba ta da kyau lokacin da ƙasa ta yi rigar; yayin da a cikin yanayin bushe, ruwan da ke cikin shuke-huke yana raguwa da sauri kuma ƙasa ta zama mai tauri da ƙuƙwalwa (ƙarfin ƙasa mai ƙarfi). [26] Mafi girman pH a cikin ƙasa, ƙananan ruwa da za a rarraba ga tsire-tsire da kwayoyin da suka dogara da shi. Tare da raguwar pH, wannan ba ya ba da damar shuke-shuke su sha ruwa kamar yadda suke yi. Wannan ya sa ba za su iya photosynthesize ba.[27]

Yawancin ƙasa masu ƙarfi, a gefe guda, suna da haɗuwa mai ƙarfi, ruwa mai kyau na ciki, da halaye masu kyau na riƙe ruwa. Koyaya, ga nau'ikan shuke-shuke da yawa, guba na aluminum yana iyakance ci gaban tushen, kuma damuwa na danshi na iya faruwa ko da lokacin da ƙasa ta ɗan danshi.[15]

Sha'awar pH na shuka[gyara sashe | gyara masomin]

Gabaɗaya, nau'ikan shuke-shuke daban-daban sun dace da ƙasa na pH daban-daban. Ga nau'o'i da yawa, an san yanayin pH na ƙasa da ya dace sosai. Ana iya amfani da bayanan kan layi na halaye na shuke-shuke, kamar USDA PLANTS [28] da Plants for a Future [29] don bincika yanayin pH mai dacewa na shuke'o'i daban-daban. Hakanan ana iya bincika takardu kamar ƙimar alamar Ellenberg don tsire-tsire na Burtaniya.

Koyaya, shuka na iya zama mai ƙin yarda da wani pH a wasu ƙasa sakamakon wani tsari, kuma wannan hanyar bazai shafi wasu ƙasa ba. Misali, ƙasa mai ƙarancin molybdenum bazai dace da tsire-tsire na soya a pH 5.5, amma ƙasa tare da isasshen molybdenam yana ba da damar ingantaccen girma a wannan pH.[21] Hakazalika, wasu calcifuges (tsire-tsire marasa haƙuri da ƙasa mai ƙarfi) na iya haƙuri da ƙasar calcareous idan an ba da isasshen phosphorus.[30] Wani abu mai rikitarwa shi ne cewa nau'o'i daban-daban na nau'in iri ɗaya galibi suna da nau'o-nau'in pH daban-daban. Masu shuka shuke-shuke na iya amfani da wannan don shuka nau'ikan da za su iya jure yanayin da ba a ɗauka ba su dace da wannan nau'in - misalai sune ayyukan shuka nau-ikan amfanin gona na aluminum da manganese don samar da abinci a cikin ƙasa mai karfi.

Teburin da ke ƙasa yana ba da yanayin pH mai dacewa ga wasu tsire-tsire masu noma kamar yadda aka samu a cikin USDA PLANTS Database.[28] Wasu nau'o'in (kamar Pinus radiata da Opuntia ficus-indica) suna jurewa ne kawai a cikin pH na ƙasa, yayin da wasu (kamar Vetiveria zizanioides) suna jure wa kewayon pH mai yawa.

Sunan kimiyya Sunan gama gari pH (mafi ƙanƙanta) pH (mafi girma)
Chrysopogon zizanioides Ciyawa ta Vetiver 3.0 8.0
Pinus rigida Pine mai laushi 3.5 5.1
Rubus chamaemorus Cloudberry 4.0 5.2
Ananas comosus pineapple 4.0 6.0
Coffea arabica Kofi na Larabawa 4.0 7.5
Rhododendron arborescens mai santsi azalea 4.2 5.7
Pinus radiata Pine na Monterey 4.5 5.2
Carya illinoinensis pecan 4.5 7.5
Tamarindus ya nuna tamarind 4.5 8.0
Allurar rigakafi ta corymbosum highbush blueberry 4.7 7.5
Hot mai zane-zane cassava 5.0 5.5
Morus alba fararen mulberry 5.0 7.0
Malus apple 5.0 7.5
Pinus sylvestris Scots pine 5.0 7.5
Carica papaya papaya 5.0 8.0
Cajanus cajan kurciya 5.0 8.3
Pyrus communis Pear na yau da kullun 5.2 6.7
Solanum lycopersicum Tamati na lambu 5.5 7.0
Psidium guajava guava 5.5 7.0
Nerium oleander Mai shayarwa 5.5 7.8
Punica granatum grenade 6.0 6.9
Viola sororia blue violet na yau da kullun 6.0 7.8
Caragana bishiyoyi Itacen peash na Siberiya 6.0 9.0
Cotoneaster integerrimus Cottonaster 6.8 8.7
Opuntia ficus-indica Fitar da aka yi wa Barbary 7.0 8.5

A cikin al'ummomin shuke-shuke na halitta ko kusa da na halitta, abubuwan da pH daban-daban na nau'ikan shuke-huke (ko Ecosotypes) aƙalla wani ɓangare yana ƙayyade abun da ke ciki da bambancin halittu na ciyayi. Duk da yake duka ƙananan ƙimar pH suna da lahani ga ci gaban shuke-shuke, akwai karuwar yanayin bambancin shuke-huke na tsire-tsire tare da kewayon daga ƙasa mai tsayi (pH 3.5) zuwa ƙasa mai ƙarfi (pH 9) mai ƙarfi, watau akwai ƙarin calcicole fiye da nau'in calcifuge, aƙalla a cikin mahalli na ƙasa.[31][32] Kodayake an bayar da rahoto sosai kuma an goyi bayan sakamakon gwaji, [33] karuwar da aka lura da wadatar nau'ikan shuke-shuke tare da pH har yanzu yana buƙatar bayani mai tsabta.[34] Rashin gasa tsakanin nau'ikan shuke-shuke tare da kewayon pH mafi yiwuwa yana ba da gudummawa ga sauye-sauyen da aka lura da abun da ke cikin ciyayi tare da gradients na pH.[35]

Tasirin pH akan halittu na ƙasa[gyara sashe | gyara masomin]

Biota na ƙasa (microflora na ƙasa, dabbobi na ƙasa) suna da hankali ga pH na ƙasa, ko dai kai tsaye a kan tuntuɓar ko bayan cin ƙasa ko a kaikaice ta hanyar halaye daban-daban na ƙasa wanda pH ke ba da gudummawa (misali matsayin Abinci mai gina jiki, guba na ƙarfe, nau'in humus). Dangane da sauye-sauyen ilimin lissafi da halayyar ƙasa, nau'in nau'ikan microbial da dabbobi sun bambanta da pH na ƙasa.[36][37] Tare da gradients na tsawo, canje-canje a cikin nau'in rarraba na dabbobi na ƙasa da al'ummomin microbial za a iya aƙalla a wani ɓangare ga bambancin pH na ƙasa.[37][38] Canjin daga nau'ikan Aluminium masu guba zuwa wadanda ba masu guba ba a kusa da pH5 yana nuna hanyar daga juriya ta acid zuwa juriya ta acid, tare da 'yan canje-canje a cikin nau'ikan nau'ikan al'ummomin ƙasa sama da wannan ƙofar, har ma a cikin Ƙasa mai laushi.[39][40] Dabbobi na ƙasa suna nuna bambancin fifiko na pH lokacin da aka ba su izinin yin zabi tare da kewayon ƙimar pH, yana bayanin cewa rarrabawar filayen daban-daban na kwayoyin ƙasa, ƙwayoyin cuta masu motsi da aka haɗa, na iya aƙalla wani ɓangare ya haifar da motsi mai aiki tare da gradients na pH.[41][42][43] Kamar ga tsire-tsire, ana zargin gasa tsakanin kwayoyin da ke zaune a ƙasa da masu haƙuri da acid da ke da ƙwayoyin da ke taka rawa a cikin sauye-sauye a cikin nau'in jinsin da aka lura tare da kewayon pH.[44]

Ana lura da adawa tsakanin haƙuri da haƙuri da ƙarancin haƙuri a matakin jinsuna a cikin jinsuna ko a matakin jinsin a cikin iyali, amma kuma yana faruwa a matsayi mafi girma, kamar tsakanin ƙwayoyin cuta da ƙwayoyin ƙwayoyin halitta, a nan ma tare da shiga cikin gasa mai ƙarfi.[45]An ba da shawarar cewa kwayoyin ƙasa da suka fi jurewa da acidity na ƙasa, kuma saboda haka suna rayuwa galibi a cikin ƙasa a pH ƙasa da 5, sun fi na asali fiye da waɗanda ba su da haƙuri da acidity.[46] Binciken cladistic akan nau'in collembolan Willemia ya nuna cewa haƙuri ga acidity na ƙasa yana da alaƙa da haƙuri na wasu abubuwan damuwa kuma haƙuri na damuwa hali ne na kakanninmu a cikin wannan nau'in.[47] Koyaya har yanzu ba a kafa yawan waɗannan binciken ba.

A low pH, oxidative stress da aluminum (Al3 +) ya haifar yana shafar dabbobin ƙasa wanda jikinsa ba a kare shi da wani thick Chitin exoskeleton kamar a cikin arthropods, kuma saboda haka suna cikin hulɗa kai tsaye tare da maganin ƙasa, misali protists, Nematodes, rotifers (microfauna), enchytraeids (mesofauna) da earthworms (macrofauna). [48]

Tasirin pH a kan halittu na ƙasa za a iya yin sulhu ta hanyar hulɗar aiki daban-daban na abinci na ƙasa. An nuna ta hanyar gwaji cewa collembolan Heteromurus nitidus, wanda ke zaune a cikin ƙasa a pH sama da 5, za a iya al'ada shi a cikin ƙasa mai ƙamshi idan masu cin nama ba su nan.[49] Sha'awarsa ga excreta na earthworm (mucus, fitsari, faeces), wanda aka yi amfani da shi ta hanyar fitar da ammoniya, yana ba da abinci da mafaka a cikin burrows na earthworms a cikin siffofin mull humus da ke da alaƙa da ƙasa mai ƙarancin acid. [50][51]

Tasirin halittu na ƙasa akan pH na ƙasa[gyara sashe | gyara masomin]

Biota na ƙasa yana shafar pH na ƙasa kai tsaye ta hanyar fitarwa, kuma a kaikaice ta hanyar aiki a kan yanayin jiki. Yawancin ƙwayoyin ƙwayoyin cuta, kodayake ba dukansu ba, suna ƙunshe da ƙasa ta hanyar fitar da oxalic acid, samfurin metabolism na numfashi. Oxalic acid yana zubar da calcium, yana samar da lu'ulu'u marasa narkewa na calcium oxalate kuma ta haka ne ya hana maganin ƙasa daga wannan nau'in da ake bukata.[52] A gefe guda, tsutsotsi suna yin tasiri a kan pH na ƙasa ta hanyar fitar da mucus, wanda aka ba da kayan amphoteric.[53]

Ta hanyar haɗakar kwayoyin halitta tare da kwayoyin halitta, musamman ƙwayoyin ƙwari" rel="mw:WikiLink" title="Clay">yumɓu, da kuma ƙara mucus a matsayin manne ga wasu daga cikinsu, burrowing soil dabbobi, misali burbushin burbushin, moles, earthworms, termites, wasu millipedes da fly larvae, taimakawa wajen rage halitta acidity na kwayoyin halitta na kwayoyin, kamar yadda aka lura a cikin mull humus siffofi.[54][55]

Canjin pH na ƙasa[gyara sashe | gyara masomin]

Karin pH na ƙasa mai ƙamshi[gyara sashe | gyara masomin]

Sau da yawa ana amfani da lemun tsami na ƙasa a kan ƙasa mai ƙamshi don ƙara pH na ƙasa (liming). Adadin dutse mai laushi ko chalk da ake buƙata don canza pH an ƙayyade shi ta girman raga na lemun tsami (yadda yake ƙasa) da ƙarfin ƙarfin ƙasa. Babban girman raga (60 mesh = 0.25 mm; 100 mesh = 0.149 mm) yana nuna kyakkyawan laka mai laushi wanda zai amsa da sauri tare da acidity na ƙasa.   Ikon buffering na ƙasa ya dogara da abun da ke cikin yumɓu na ƙasa, nau'in yumɓu, da adadin kwayoyin halitta da ke akwai, kuma yana iya kasancewa da alaƙa da ikon musayar cation na ƙasa. Ƙasa mai ƙarancin yumɓu zai sami ƙarfin buffering mafi girma fiye da ƙasa mai ƙaranci, kuma ƙasa mai ƙwayoyin halitta mai ƙaranfin ƙwayoyin cuta za ta sami ƙarfin bufering mafi girma ukucila waɗanda ke da ƙarancin kwayoyin halitta.[56] Ƙasa tare da ƙarfin buffering mafi girma suna buƙatar adadi mafi girma na lime don cimma daidaitattun canji a pH.[57] Buffering na pH na ƙasa sau da yawa yana da alaƙa kai tsaye da yawan aluminum a cikin maganin ƙasa da ɗaukar wuraren musayar a matsayin wani ɓangare na ƙarfin musayar cation. Ana iya auna wannan aluminum a cikin gwajin ƙasa wanda aka cire shi daga ƙasa tare da maganin gishiri, sannan a ƙayyade shi tare da nazarin dakin gwaje-gwaje. Sa'an nan, ta amfani da pH na farko na ƙasa da abun ciki na aluminum, ana iya lissafin adadin lemun tsami da ake buƙata don haɓaka pH zuwa matakin da ake so.[58]

Gyaran da ba a yi amfani da su ba don kara pH na ƙasa sun haɗa da toka na itace, calcium oxide na masana'antu (ƙone lemun tsami), magnesium oxide, ƙwayoyin ƙwayoyin cuta (calcium silicate), da harsashi na oyster. Wadannan kayayyakin suna kara pH na ƙasa ta hanyar halayen acid-base daban-daban. Calcium silicate yana kawar da acidity mai aiki a cikin ƙasa ta hanyar amsawa tare da ions na H + don samar da acid monosilicic (H44), mai tsaka-tsaki. 

Rage pH na ƙasa mai ƙamshi[gyara sashe | gyara masomin]

Ana iya rage pH na ƙasa mai alkaline ta hanyar ƙara wakilai masu ƙwayoyin cuta ko kayan ƙwayoyin ƙwayoyin halitta. An yi amfani da sulfur na asali (90-99% S) a ƙimar aikace-aikace na 300-500 kg / ha (270-450 lb / ) - a hankali yana ƙonewa a cikin ƙasa don samar da sulfuric acid. Acidifying taki, kamar ammonium sulfate, ammonium nitrate da urea, na iya taimakawa wajen rage pH na ƙasa saboda ammonium oxidises don samar da nitric acid. Abubuwan da ke da ƙwayoyin cuta sun haɗa da peat ko sphagnum peat moss.[59]

However, in high-pH soils with a high calcium carbonate content (more than 2%), it can be very costly and/or ineffective to attempt to reduce the pH with acids. In such cases, it is often more efficient to add phosphorus, iron, manganese, copper and/or zinc instead, because deficiencies of these nutrients are the most common reasons for poor plant growth in calcareous soils.[60][59]

  1. Empty citation (help)
  2. Slessarev, Eric W.; Lin, Yuan; Bingham, Nina L.; Johnson, Jennifer E.; Dai, Yongjiu; Schimel, Joshua P.; Chadwick, Oliver A. (21 November 2016). "Water balance creates a threshold in soil pH at the global scale" (PDF). Nature. 540 (7634): 567–69. Bibcode:2016Natur.540..567S. doi:10.1038/nature20139. PMID 27871089. S2CID 4466063. Retrieved 5 February 2023.
  3. 3.0 3.1 Queensland Government. "Soil pH" (in Turanci). Queensland Government. Retrieved 5 February 2023.
  4. Soil Science Division Staff. "Soil Survey Manual 2017, Chapter 3, Examination and description of soil profiles" (PDF). Natural Resources Conservation Service, United States Department of Agriculture, Handbook 18. Retrieved 12 February 2023.
  5. "Evolution of the pH Meter". Lab Manager (in Turanci). Retrieved 2023-09-22.
  6. Bargrizan, Sima; Smernik, Ronald J.; Mosley, Luke M. (November 2017). "Development of a spectrophotometric method for determining pH of soil extracts and comparison with glass electrode measurements". Soil Science Society of America Journal. 81 (6): 1350–58. Bibcode:2017SSASJ..81.1350B. doi:10.2136/sssaj2017.04.0119. Retrieved 12 February 2023.
  7. USDA-NRCS. "Soil pH" (PDF). Soil Health - Guides for Educators. Retrieved 19 February 2023.
  8. Van Breemen, Nico; Mulder, Jan; Driscoll, Charles T. (October 1983). "Acidification and alkalinization of soils". Plant and Soil. 75 (3): 283–308. Bibcode:1983PlSoi..75..283V. doi:10.1007/BF02369968. S2CID 39568100. Retrieved 19 February 2023.
  9. Van Breemen, Nico; Driscoll, Charles T.; Mulder, Jan (16 February 1984). "Acidic deposition and internal proton sources in acidification of soils and waters". Nature. 307 (5952): 599–604. Bibcode:1984Natur.307..599B. doi:10.1038/307599a0. S2CID 4342985. Retrieved 19 February 2023.
  10. 10.0 10.1 10.2 (Yuncong ed.). Missing or empty |title= (help)
  11. Oosterbaan, Roland J. "Soil alkalinity (alkaline-sodic soils)" (PDF). www.waterlog.info. Retrieved 12 March 2023.
  12. 12.0 12.1 "Public health statement for aluminum" (PDF). www.atsdr.cdc.gov (in Turanci). September 2008. Archived from the original on 12 December 2016. Retrieved 12 March 2023.
  13. Dolara, Piero (21 July 2014). "Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver)". International Journal of Food Sciences and Nutrition. 65 (8): 911–24. doi:10.3109/09637486.2014.937801. ISSN 1465-3478. PMID 25045935. S2CID 43779869. Retrieved 12 March 2023.
  14. Rosseland, Bjorn Olav; Eldhuset, Toril Drabløs; Staurnes, Magne (1990). "Environmental effects of aluminium". Environmental Geochemistry and Health. 12 (1–2): 17–27. Bibcode:1990EnvGH..12...17R. doi:10.1007/BF01734045. ISSN 0269-4042. PMID 24202562. S2CID 23714684. Retrieved 12 March 2023.
  15. 15.0 15.1 15.2 Kopittke, Peter M.; Menzies, Neal W.; Wang, Peng; Blamey, F. Pax C. (August 2016). "Kinetics and nature of aluminium rhizotoxic effects: a review". Journal of Experimental Botany. 67 (15): 4451–67. doi:10.1093/jxb/erw233. PMID 27302129. Retrieved 19 March 2023.
  16. Hansson, Karna; Olsson, Bengt A.; Olsson, Mats; Johansson, Ulf; Kleja, Dan Berggren (August 2011). "Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden". Forest Ecology and Management. 262 (3): 522–30. doi:10.1016/j.foreco.2011.04.021. Retrieved 19 March 2023.
  17. Wright, Robert J. (September 1989). "Soil aluminum toxicity and plant growth". Communications in Soil Science and Plant Analysis. 20 (15–16): 1479–97. Bibcode:1989CSSPA..20.1479W. doi:10.1080/00103628909368163. Retrieved 19 March 2023.
  18. Rout, Gyana Ranjan; Samantaray, Sanghamitra; Das, Premananda (January 2001). "Aluminium toxicity in plants: a review". Agronomie. 21 (1): 3–21. Bibcode:2001AgSD...21....3R. doi:10.1051/agro:2001105. Retrieved 19 March 2023.
  19. Shavrukov, Yuri; Hirai, Yoshihiko (January 2016). "Good and bad protons: genetic aspects of acidity stress responses in plants". Journal of Experimental Botany. 67 (1): 15–30. doi:10.1093/jxb/erv437. PMID 26417020.
  20. Ramakrishnan, Palayanoor Sivaswamy (April 1968). "Nutritional requirements of the edaphic ecotypes in Melilotus alba Medic. II. Aluminium and manganese". New Phytologist. 67 (2): 301–08. doi:10.1111/j.1469-8137.1968.tb06385.x.
  21. 21.0 21.1 Sumner, Malcolm E.; Yamada, Tsuioshi (November 2002). "Farming with acidity". Communications in Soil Science and Plant Analysis. 33 (15–18): 2467–96. Bibcode:2002CSSPA..33.2467S. doi:10.1081/CSS-120014461. S2CID 93165895.
  22. Cape, J. N. (1 January 1993). "Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees". Environmental Pollution. 82 (2): 167–180. doi:10.1016/0269-7491(93)90114-4. PMID 15091786. Retrieved 2 April 2023.
  23. 23.0 23.1 (Yuncong ed.). Missing or empty |title= (help)
  24. Cite error: Invalid <ref> tag; no text was provided for refs named Sumner1986
  25. Haynes, R. J. (October 1982). "Effects of liming on phosphate availability in acid soils: a critical review". Plant and Soil. 68 (3): 289–308. doi:10.1007/BF02197935. S2CID 22695096. Retrieved 9 April 2023.
  26. "Sodic soils and plant growth". fao.org (in Turanci). Retrieved 10 April 2023.
  27. Neina, Dora (2019). "The role of soil pH in plant nutrition and soil remediation". Applied and Environmental Soil Science. 2019: 1–9. doi:10.1155/2019/5794869.
  28. 28.0 28.1 USDA NRCS (2023). "Plants Database Characteristics Search". plants.usda.gov. USDA NRCS. Retrieved 16 April 2023.
  29. Plants for a future. "Plant Database Search Page". www.pfaf.org. Retrieved 16 April 2023.
  30. Lee, John A. (1998). "The calcicole-calcifuge problem revisited". Advances in Botanical Research. 29: 13. ISBN 9780080561837. Retrieved 23 April 2023.
  31. Chytrý, Milan; Tichý, Lubomír; Rolček, Jan (December 2003). "Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient". Folia Geobotanica. 38 (4): 429–42. Bibcode:2003FolGe..38..429C. doi:10.1007/BF02803250. S2CID 13016841. Retrieved 7 May 2023.
  32. Pärtel, Meelis; Helm, Aveliina; Ingerpuu, Nele; Reier, Ülle; Tuvi, Eva-Liis (December 2004). "Conservation of Northern European plant diversity: the correspondence with soil pH". Biological Conservation. 120 (4): 525–31. Bibcode:2004BCons.120..525P. doi:10.1016/j.biocon.2004.03.025. Retrieved 7 May 2023.
  33. Crawley, Michael J.; Johnston, A. Edward; Silvertown, Jonathan; Dodd, Mike; de Mazancourt, Claire; Heard, Matthew S.; Henman, D. F.; Edwards, Grant R. (February 2005). "Determinants of species richness in the Park Grass Experiment". American Naturalist. 165 (2): 179–92. doi:10.1086/427270. PMID 15729649. S2CID 7389457. Retrieved 14 May 2023.
  34. Poozesh, Vahid; Castillon, Pierre; Cruz, Pablo; Bertoni, Georges (June 2010). "Re-evaluation of the liming-fertilization interaction in grasslands on poor and acid soils". Grass and Forage Science. 65 (2): 260–72. doi:10.1111/j.1365-2494.2010.00744.x. Retrieved 14 May 2023.
  35. Prince, Candice M.; MacDonald, Gregory E.; Ferrell, Jason A.; Sellers, Brent A.; Wang, Jingjing (2018). "Impact of soil pH on cogongrass (Imperata cylindrica) and bahiagrass (Paspalum notatum) competition". Weed Technology. 32 (3): 336–41. doi:10.1017/wet.2018.3. S2CID 91112353.
  36. Lauber, Christian L.; Hamady, Micah; Knight, Rob; Fierer, Noah (August 2009). "Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale". Applied and Environmental Microbiology. 75 (15): 5111–20. Bibcode:2009ApEnM..75.5111L. doi:10.1128/AEM.00335-09. PMC 2725504. PMID 19502440.
  37. 37.0 37.1 Loranger, Gladys; Bandyopadhyaya, Ipsa; Razaka, Barbara; Ponge, Jean-François (March 2001). "Does soil acidity explain altitudinal sequences in collembolan communities?". Soil Biology and Biochemistry. 33 (3): 381–93. doi:10.1016/S0038-0717(00)00153-X. S2CID 84523833. Retrieved 4 June 2023.
  38. Tian, Qiuxiang; Jiang, Ying; Tang, Yanan; Wu, Yu; Tang, Zhiyao; Liu, Feng (30 July 2021). "Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient". Frontiers in Microbiology. 12 (646124): 646124. doi:10.3389/fmicb.2021.646124. PMC 8363232 Check |pmc= value (help). PMID 34394018 Check |pmid= value (help).
  39. Ponge, Jean-François (July 1993). "Biocenoses of Collembola in atlantic temperate grass-woodland ecosystems". Pedobiologia. 37 (4): 223–44. doi:10.1016/S0031-4056(24)00100-8. Retrieved 11 June 2023.
  40. Desie, Ellen; Van Meerbeek, Koenraad; De Wandeler, Hans; Bruelheide, Helge; Domisch, Timo; Jaroszewicz, Bogdan; Joly, François-Xavier; Vancampenhout, Karen; Vesterdal, Lars; Muys, Bart (August 2020). "Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests". Functional Ecology. 34 (12): 2598–2610. Bibcode:2020FuEco..34.2598D. doi:10.1111/1365-2435.13668. S2CID 225182565. Retrieved 11 June 2023. |hdl-access= requires |hdl= (help)
  41. Van Straalen, Nico M.; Verhoef, Herman A. (February 1997). "The development of a bioindicator system for soil acidity based on arthropod pH preferences". Journal of Applied Ecology. 34 (1): 217–32. Bibcode:1997JApEc..34..217V. doi:10.2307/2404860. JSTOR 2404860. Retrieved 18 June 2023.
  42. He, Bin; Wang, Zhipeng; Xu, Changhui; Shen, Runjie; Hu, Sanqing (2013). "The study on pH gradient control in solution for driving bacteria" (PDF). Biocybernetics and Biomedical Engineering. 33 (2): 88–95. doi:10.1016/j.bbe.2013.03.003. Retrieved 18 June 2023.
  43. Wang, Congli; Bruening, George; Williamson, Valerie M. (20 October 2009). "Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel" (PDF). Journal of Chemical Ecology. 35 (10): 1242–51. Bibcode:2009JCEco..35.1242W. doi:10.1007/s10886-009-9703-8. PMC 2780626. PMID 19838866. S2CID 8403899. Retrieved 18 June 2023.
  44. Hågvar, Sigmund (April 1990). "Reactions to soil acidification in microarthropods: is competition a key factor?" (PDF). Biology and Fertility of Soils. 9 (2): 178–81. Bibcode:1990BioFS...9..178H. doi:10.1007/BF00335804. S2CID 5099516. Retrieved 25 June 2023.
  45. Rousk, Johannes; Brookes, Philip C.; Bååth, Erland (June 2010). "Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil" (PDF). Soil Biology and Biochemistry. 42 (6): 926–34. doi:10.1016/j.soilbio.2010.02.009. Retrieved 25 June 2023.
  46. Ponge, Jean-François (March 2000). "Acidophilic Collembola: living fossils?". Contributions from the Biological Laboratory, Kyoto University. 29: 65–74. Retrieved 2 July 2023.
  47. Prinzing, Andreas; D'Haese, Cyrille A.; Pavoine, Sandrine; Ponge, Jean-François (February 2014). "Species living in harsh environments have low clade rank and are localized on former Laurasian continents: a case study of Willemia (Collembola)". Journal of Biogeography. 41 (2): 353–65. Bibcode:2014JBiog..41..353P. doi:10.1111/jbi.12188. S2CID 86619537. Retrieved 2 July 2023.
  48. Li, Yin-Sheng; Sun, Jing; Robin, Paul; Cluzeau, Daniel; Qiu, Jiangping (April 2014). "Responses of the earthworm Eisenia andrei exposed to sublethal aluminium levels in an artificial soil substrate". Chemistry and Ecology. 30 (7): 611–21. Bibcode:2014ChEco..30..611L. doi:10.1080/02757540.2014.881804. S2CID 97315212. Retrieved 2 July 2023.
  49. Salmon, Sandrine; Ponge, Jean-François (July 1999). "Distribution of Heteromurus nitidus (Hexapoda, Collembola) according to soil acidity: interactions with earthworms and predator pressure". Soil Biology and Biochemistry. 31 (8): 1161–70. doi:10.1016/S0038-0717(99)00034-6. Retrieved 16 July 2023.
  50. Salmon, Sandrine (November 2001). "Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils". Biology and Fertility of Soils. 34 (5): 304–10. Bibcode:2001BioFS..34..304S. doi:10.1007/s003740100407. S2CID 33455553. Retrieved 23 July 2023.
  51. Salmon, Sandrine (17 September 2004). "The impact of earthworms on the abundance of Collembola: improvement of food resources or of habitat?". Biology and Fertility of Soils. 40 (5): 523–33. Bibcode:2004BioFS..40..323S. doi:10.1007/s00374-004-0782-y. S2CID 9671870. Retrieved 23 July 2023.
  52. Casarin, Valter; Plassard, Claude; Souche, Gérard; Arvieu, Jean-Claude (July 2003). "Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil". Agronomie. 23 (5–6): 461–69. Bibcode:2003AgSD...23..461C. doi:10.1051/agro:2003020. S2CID 84663116. Retrieved 20 August 2023.
  53. Schrader, Stefan (1994). "Influence of earthworms on the pH conditions of their environment by cutaneous mucus secretion". Zoologischer Anzeiger. 233 (5–6): 211–19.
  54. Guhra, Tom; Stolze, Katharina; Schweizer, Steffen; Totsche, Kai Uwe (June 2020). "Earthworm mucus contributes to the formation of organo-mineral associations in soil". Soil Biology and Biochemistry. 145 (107785): 1–10. doi:10.1016/j.soilbio.2020.107785. Retrieved 27 August 2023. |hdl-access= requires |hdl= (help)
  55. Zanella, Augusto; Ponge, Jean-François; Briones, Maria J. I. (January 2018). "Humusica 1, article 8: Terrestrial humus systems and forms – Biologicalactivity and soil aggregates, space-time dynamics". Applied Soil Ecology. 122 (1): 103–37. Bibcode:2018AppSE.122..103Z. doi:10.1016/j.apsoil.2017.07.020. Retrieved 27 August 2023.
  56. Minhal, Fibrianty; Ma'as, Aswar; Hanudin, Eko; Sudira, Putu (June 2020). "Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clay and organic by-product application" (PDF). Soil and Water Research. 15 (2): 93–100. doi:10.17221/55/2019-SWR. Retrieved 3 September 2023.
  57. Aitken, R.L.; Moody, Philip W.; McKinley, P.G. (1990). "Lime requirement of acidic Queensland soils. I. Relationships between soil properties and pH buffer capacity". Australian Journal of Soil Research. 28 (5): 695–701. doi:10.1071/SR9900695.
  58. Bartlett, Richmond (1982). "Reactive aluminum in the Vermont Soil Test". Communications in Soil Science and Plant Analysis. 13 (7): 497–506. Bibcode:1982CSSPA..13..497B. doi:10.1080/00103628209367289.
  59. 59.0 59.1 Cox, Loralie; Koenig, Rich (2010). "Solutions to soil problems. II. High pH (alkaline soil)". Utah State University. Retrieved 10 September 2023.
  60. "Soil quality indicators: pH" (PDF). USDA, Natural Resources Conservation Service. 1998. Retrieved 10 September 2023.